SOMMAIRE

EHRESMANN, GRAN & GUITART, New editorial Board of the "Cahiers" 242
LACK & STREET, On monads and warpings 244
BERTRAM & SOUVAY, A general construction of Weil functors 267
TAC: Theory and Applications of categories 313
RESUMES des articles parus dans le volume LV 317
NEW EDITORIAL BOARD OF THE "CAHIERS"

by Andrée EHRESMANN, Marino GRAN and René GUITART

It is a pleasure to announce that the Editorial Board of the “Cahiers” will be enlarged and modified as follows, starting from January 2015:

Chief Editors:
EHresmann Andréé (Université de Picardie Jules Verne)
Gran Marino (Université catholique de Louvain)
Guitart René (Université Paris 7 Denis Diderot)

Editors:
Adámek Jiri (Technische Universität Braunschweig)
Berger Clemens (Université de Nice-Sophia Antipolis)
Bunge Marta (McGill University)
Clementino Maria Manuel (Universidade de Coimbra)
Janelidze Zurab (Stellenbosch University)
Johnstone Peter (University of Cambridge)
Kock Anders (Aarhus University)
Lack Stephen (Macquarie University)
Mantovani Sandra (Università degli Studi di Milano)
Porter Tim (University of Wales Bangor)
Pradines Jean (Université Paul Sabatier Toulouse)
Riehl Emily (Harvard University)
Street Ross (Macquarie University)

The “Cahiers” were created in 1957 under the initial title “Séminaire Ehresmann. Topologie et Géométrie Différentielle”, published in the series of the “Séminaires de l’Institut Henri Poincaré”. Starting from Volume II, they appeared as an independent publication (edited by Dunod from 1967 to 1972), the title being changed a few times until 1966, when they were named “Cahiers de Topologie et Géométrie Différentielle”
EHRESMANN, GRAN & GUITART - NEW EDITORIAL BOARD

(cf. Charles and Andrée Ehresmann, « Déjà vingt ans … », Vol. XVIII-4 (1977), 431-432). In that article it was already observed that, by taking into account the evolution of the subject, a title such as “Théorie et Applications des Catégories” would have been more suitable, since many mathematicians applying category theory to different areas of mathematics had already published in the “Cahiers”. This is the reason why, already 30 years ago (starting from volume XXV in 1984), the present name “Cahiers de Topologie et Géométrie Différentielle Catégoriques” was chosen, underlying the continuity with the origin of the journal, and also the natural change consisting in placing category theory at the centre of the research interests of the journal.

Starting from January 2015, the Editorial Board will be enlarged, by including a new generation of mathematicians and by opening the journal to some new research areas where category theory is developing and is being applied. The main research subject of the journal remains pure category theory, together with its applications in topology, differential geometry, algebraic geometry, universal algebra, homological algebra, algebraic topology.

Papers submitted for publication should be sent to one of the editors as a pdf file, with a copy to Andrée Ehresmann (ehres@u-picardie.fr). More information on the submission format can be found on the site http://ehres.pagesperso-orange.fr/Cahiers/Ctgdc.htm where the Index of the papers published in the "Cahiers" since their creation, as well as English abstracts of those published since 1999, are also available. A new website of the journal, hosted by the Université catholique de Louvain, will be published next year. The articles of the "Cahiers" will also be available on the new website after 2 years.

Correspondence concerning subscriptions and backsets is to be sent to Andrée Ehresmann by e-mail: ehres@u-picardie.fr , or by postal mail :

Mme Ehresmann, Faculté des Sciences, Mathématique, 33 rue Saint-Leu, F-80039 Amiens. France.
Abstract. We explain the sense in which a warping on a monoidal category is the same as a pseudomonad on the corresponding one-object bicategory, and we describe extensions of this to the setting of skew monoidal categories: these are a generalization of monoidal categories in which the associativity and unit maps are not required to be invertible. Our analysis leads us to describe a normalization process for skew monoidal categories, which produces a universal skew monoidal category for which the right unit map is invertible.

Keywords. monad, bicategory, skew monoidal category, warping

Mathematics Subject Classification (2010). 18C15, 18D05, 18D1

1. Introduction

If \(C \) is a monoidal category with tensor product \(\otimes \), and \(T : C \to C \) is a functor, then one can define a new product \(\boxtimes \) on \(C \) via the formula

\[
A \boxtimes B = TA \otimes B.
\]

In order for this to define a new monoidal structure on \(C \), further structure on \(C \) is required. The notion of warping, introduced in [3], is designed to do
just that: if T is a warping then C becomes monoidal via the “warped” tensor product \boxtimes defined above.

While the notion of warping is quite restrictive, the skew warpings of [6] are far more common: for example, if T has a monad structure, and this monad is opmonoidal [12, 11], in the sense that there are suitably coherent maps $T(A \otimes B) \to TA \otimes TB$ and $TI \to I$, then T is a skew warping. In particular, if H is a bialgebra, then the functor $H \otimes - : \text{Vect} \to \text{Vect}$ has a skew warping structure.

The price of this extra generality is that the warped tensor product no long gives a monoidal structure, but only a skew monoidal one, in the sense of [6] (called left skew monoidal in [15]). These skew monoidal categories are similar to monoidal categories, except that the associativity and unit structure morphisms are not required to be invertible. The key insight of [15] is that these skew monoidal categories can be used to provide a valuable new characterization of bialgebroids; this was extended in [6] to the case of quantum categories.

We have been studying skew monoidal categories in a series of papers [6, 14, 5, 7], but have so far only scratched the surface of this remarkable theory, which seems to stem from the fact that skew monoidal categories are at the same time a generalization of monoidal categories and of categories.

While skew warpings and skew monoidal structures are quite recent, monads have of course been a central topic in category theory for decades, and have been generalized in many directions. For example, monads can be defined in any bicategory [2], and while monads in Cat are just ordinary monads, monads in Span are categories. Generalizing in a different direction, one can consider monads not just on categories but on 2-categories or bicategories, and in this context one often has weaker structures called pseudomonads; still more generally, there are various lax notions of monad.

Most of these generalizations rely, directly or indirectly, on the fact that (ordinary) monads are the same as monoids in a monoidal category of endo-functors. But there is also another approach, which has largely been developed and promoted by Manes, for example in [9]; but see also Walters’ thesis [16]. In this approach, one does not specify a functor at all; rather, for each object A of the category \mathcal{C} one gives an object DA and a morphism $K_A : A \to DA$, and for each morphism $f : A \to DB$ one gives a morphism $Tf : DA \to DB$.
One feature of this approach is that, whereas the usual definition of monad involves an associative multiplication $D \circ D \to D$ and so requires the formation of $D \circ D$ and $D \circ D \circ D$, in Manes’ approach, these iterates of D are not needed. Thus Marmolejo and Wood use the epithet “no iteration” to refer to this approach to monads, when in [10] they modify the theory to deal with pseudomonads. Since this is a little unwieldy, we shall replace “no iteration” by “mw-”. We leave to the reader the question of whether these letters denote Manes and Walters, Marmolejo and Wood, or something else entirely.

The goal of this paper is to describe a close relationship between warpings and skew warpings on the one hand, and mw-monads and pseudo-mw-monads on the other.

Perhaps the simplest result to state is this:

Let C be a monoidal category, and ΣC the corresponding one-object bicategory. A warping on C is the same as a pseudomonad on ΣC.

We prove this in Corollary 5.3 below. We could equally have put pseudo-mw-monad rather than pseudomonad since, as proved in [10], these amount to the same thing.

This correspondence between pseudo-mw-monads and pseudomonads depends heavily on the invertibility of certain structure maps. If one weakens this requirement, the resulting notion of skew mw-monad is no longer equivalent to any lax version of ordinary pseudomonads. Nonetheless these skew mw-monads seem to be an interesting structure:

Let C be a monoidal category, and ΣC the corresponding one-object bicategory. A skew warping on C is the same as a skew mw-monad on ΣC.

These connections between (possibly skew) warpings and (higher) mw-monads shed light on both. In one direction, it shows that the “warped” monoidal structure involving \boxdot is really a sort of Kleisli construction, it suggests that one should consider “algebras” for skew warpings, and it suggests that warpings should be considered on bicategories as well as monoidal
categories. In the other, it makes clear that some of the axioms for mw-pseudomonads are redundant, and suggests considering lax/skew variants as well.

In the final section of the paper, we describe a universal process whereby a skew monoidal category can be replaced by one which is right normal, in the sense that the right unit constraint is invertible. We call this process (right) normalization, and we use it to give a formal account of the relationship between monads and mw-monads.

2. Review of mw-monads

In this section, we recall the definition of mw-monad, and its relationship to ordinary monads.

The usual notion of monad on a category \(\mathcal{C}\) consists of a functor \(D: \mathcal{C} \to \mathcal{C}\) equipped with natural transformations \(m: D^2 \to D\) and \(K: 1 \to D\) satisfying associativity and unit laws.

Definition 2.1. An \(mw\)-monad on \(\mathcal{C}\), consists of the following structure:

- a function \(D: \text{ob} \mathcal{C} \to \text{ob} \mathcal{C}\)
- functions \(T: \mathcal{C}(X, DY) \to \mathcal{C}(DX, DY)\) assigning to each morphism \(f: X \to DY\) a morphism \(Tf: DX \to DY\)
- a morphism \(K = K_X: X \to DX\) for each \(X\)
- subject to the following equations:

\[
Tg \circ Tf = T(Tg \circ f) \\
Tf \circ K = f \\
TK_X = 1_{DX}.
\]

This determines a monad on \(\mathcal{C}\) as follows. The endofunctor is defined on objects using \(D\), and sends a morphism \(f: X \to Y\) to \(T(K_Y \circ f)\). The components of the unit are given by the \(K_X\). The component at \(X\) of the multiplication is \(T(1_{DX})\). Conversely, for any monad \(D\) on \(\mathcal{C}\) with multiplication \(M\) and unit \(K\), we get an \(mw\)-monad by defining \(Tf: DX \to DY\)
to be $Df : DX \to D^2 Y$ composed with the multiplication $D^2 Y \to DY$. These constructions are mutually inverse: see [9].

These mw-monads are in some sense more closely related to their Kleisli categories than in the usual approach. Given an mw-monad as above, the Kleisli category C_T has the same objects as C, with $C_T(X, Y) = C(X, DY)$; the identity on X is K_X, while the composite of $f : X \to DY$ and $g : Y \to DZ$ is $Tg \circ f$.

It is also possible to reformulate the usual notion of algebra for a monad in terms of the mw-monad. This is done in the following definition.

Definition 2.2. Given an mw-monad as above, an algebra consists of an object A, together with functions $E : C(X, A) \to C(DX, A)$ such that, for all $g : Y \to A$ and $f : X \to DY$, we have $Eg \circ K_Y = g$ and $Eg \circ Tf = E(Eg \circ f)$.

3. Skew bicategories

There is an evident common generalization of the notions of bicategory and skew monoidal category, which we shall tentatively call a skew bicategory, although there are also richer structures which may deserve this name. At this stage, the only motivation for the definition is to have a common setting in which to discuss bicategories and skew monoidal categories. In any case, for this paper, a skew bicategory consists of:

- objects X, Y, Z, \ldots
- hom-categories $B(X, Y)$ for all objects X and Y
- functors $M : B(Y, Z) \times B(X, Y) \to B(X, Z)$
- functors $j : 1 \to B(X, X)$
- (not necessarily invertible) natural transformations

$$
\begin{array}{ccc}
B(Y, Z) \times B(X, Y) \times B(W, X) & \xrightarrow{M \times 1} & B(X, Z) \times B(W, X) \\
\downarrow_{1 \times M} & & \downarrow_{\alpha} \\
B(Y, Z) \times B(W, Y) & \xrightarrow{M} & B(W, Z)
\end{array}
$$
whose components take the form $\alpha_{f,g,h}: (hg)f \to h(gf)$, $\lambda_f: 1f \to f$, and $\rho_f: f \to f1$, except that usually we omit the subscripts and simply write α, λ, and ρ. These are required to satisfy five conditions, asserting the commutativity of all diagrams of the form

Example 3.1. In the usual way, we identify one-object skew bicategories with skew monoidal categories.
Example 3.2. If the natural transformations α, λ, and ρ are all invertible, we recover the usual notion of bicategory, except that the usual definition includes only the first two axioms; but by adapting the argument of [4] for monoidal categories, or applying the coherence theorem of [8], one easily deduces that the other three axioms are a consequence of the first two.

4. Skew warpings on skew bicategories

In this section we make the basic definition which is a common generalization of skew warpings on skew monoidal categories, and pseudo mw-monads on bicategories.

Definition 4.1. A skew warping on the skew bicategory B consists of:

- a function $D: \text{ob} \, B \to \text{ob} \, B$
- functors $T: B(X, DY) \to B(DX, DY)$
- 1-cells $K: X \to DX$ for each X
- natural transformations

\[
\begin{align*}
B(Y, DZ) \times B(X, DY) & \xrightarrow{T \times T} B(DY, DZ) \times B(DX, DY) \\
B(DY, DZ) \times B(X, DY) & \xrightarrow{M} B(X, DZ) \xrightarrow{T} B(DX, DZ) \\
B(X, DY) & \xrightarrow{T \times K} B(DX, DY) \times B(X, DX) \\
1 & \xrightarrow{K} B(Y, DY) \\
1 & \xrightarrow{j} B(DY, DY)
\end{align*}
\]

or, in terms of components

\[
\begin{align*}
T(Tg.f) & \xrightarrow{\nu} Tg.Tf \\
f & \xrightarrow{k} Tf.K \\
TK & \xrightarrow{v_0} 1_{DY}
\end{align*}
\]
for $f: X \to DY$ and $g: Y \to DZ$.

These are required to satisfy the following five equations:

\[
\begin{align*}
T(T(Th.g).f) &\xrightarrow{\nu} T(Th.g).Tf &\xrightarrow{\nu_1} (Th.Tg).Tf \\
T((Th.Tg).f) &\xrightarrow{T\alpha} T(Th.(Tg.f)) &\xrightarrow{\nu} Th.T(Tg.f) &\xrightarrow{1_\nu} Th.(Tg.Tf)
\end{align*}
\]

\[
\begin{align*}
T(Tf.K) &\xrightarrow{\nu} Tf.TK \\
T(1.f) &\xrightarrow{T(v_0.1)} 1.Tf
\end{align*}
\]

\[
\begin{align*}
T(Tg.f).K &\xrightarrow{v^{-1}} (Tg.Tf).K \\
TK.K &\xrightarrow{v_0^{-1}} 1.K
\end{align*}
\]

for all $f: X \to DY$, $g: Y \to DZ$, and $h: Z \to DW$.

Example 4.2. A skew warping on a skew monoidal category, in the sense of [6], is literally the same as a skew warping on the corresponding one-object skew bicategory.

Example 4.3. Any category can be seen as a skew bicategory with no non-identity 2-cells. A skew warping on a category is the same thing as an mw-monad on the category, and so amounts to an ordinary monad on the category.

Definition 4.4. A warping on a bicategory is a skew warping for which ν, k, and v_0 are invertible.

Example 4.5. A warping on a 2-category B is the same as a pseudo mw-monad (a no iteration pseudomonad in the language of [10]). In more detail, T is the functor (_) of [10], while K_X is the 1-cell dX. The 2-cells \mathbb{D}_A, \mathbb{D}_f, and $\mathbb{D}_{f,h}$ of [10] are the inverses of suitable components of our v_0, k, and v. Our five axioms are then conditions 8, 2, 3, 5, and 1 respectively of [10], while the remaining axioms 4, 6, and 7 of [10] amount to naturality of v and k.
5. The Kleisli construction for skew warpings

We saw in Section 2 that the Kleisli category of a monad is easily constructed in terms of the corresponding mw-monad. We now describe an analogous construction for skew warpings; this is a straightforward generalization of [6, Proposition 3.6].

Given a skew warping, as in the previous section, there is a new skew bicategory \mathcal{B}_T with the same objects as \mathcal{B}, and with hom-categories given by $\mathcal{B}_T(X, Y) = \mathcal{B}(X, DY)$. The composition functors are given by

$$\mathcal{B}(Y, DZ) \times \mathcal{B}(X, DY) \to^{T \times 1} \mathcal{B}(DY, DZ) \times \mathcal{B}(X, DY) \to^M \mathcal{B}(X, DZ)$$

so that the composite of $f : X \to DY$ and $g : Y \to DZ$ is $Tg \circ f : X \to DZ$. The identities are given by the $K : X \to DX$. The associativity maps have the form

$$T(Th.g).f \to^{v_1} (Th.Tg).f \to^\alpha Th.(Tg.f)$$

and the identity maps have the form

$$TK.f \to^{v_0} 1.f \to^\lambda f \to^k Tf.K.$$

Remark 5.1. We have numbered the axioms for skew bicategories and for skew warpings in such a way that to prove axiom n for \mathcal{B}_T one needs only axiom n for \mathcal{B} and axiom n for the skew warping.

Proposition 5.2. In the definition of a (skew) warping, if \mathcal{B} is a bicategory and if v, v_0, and k are invertible, then axioms 3, 4, and 5 follow from the first two axioms.

Proof. Suppose that the first two axioms hold. Then we can still form the Kleisli construction \mathcal{B}_T as above, and the associativity and identity 2-cells will be invertible and satisfy axioms 1 and 2. Thus as explained in Example 3.2 this defines a bicategory, and the remaining (skew) bicategory axioms 3, 4, and 5 hold. Now axioms 4 and 5 for a skew warping are literally the same as axioms 4 and 5 for the skew bicategory \mathcal{B}_T, while axiom 3 for a skew warping is a straightforward consequence of axiom 3 for the skew bicategory \mathcal{B}_T. \qed
Corollary 5.3. A warping on a monoidal category, in the sense of [3], is the same as a warping on the corresponding one-object bicategory, and so as a pseudomonad on the one-object bicategory.

Corollary 5.4. Conditions 1, 3, and 5 in [10, Definition 2.1] follow from the other conditions.

6. Algebras

We now generalize the definition of algebra given in [10, Section 4] to our setting.

Let \mathcal{B} be a skew bicategory, and consider a skew warping on \mathcal{B}, as in Section 4.

Definition 6.1. An algebra for the skew warping consists of an object $A \in \mathcal{B}$ equipped with

- a functor $E : \mathcal{B}(X, A) \to \mathcal{B}(DX, A)$ for each X
- natural transformations

$$
\begin{array}{c}
\mathcal{B}(Y, A) \times \mathcal{B}(X, DY) \xrightarrow{\times 1} \mathcal{B}(DY, A) \times \mathcal{B}(X, DY) \xrightarrow{M} \mathcal{B}(X, A) \\
\mathcal{B}(DY, A) \times \mathcal{B}(DX, DY) \xrightarrow{M} \mathcal{B}(DX, A)
\end{array}
$$

or in terms of components

$$
E(Ea.x) \xrightarrow{e} Ea.Tx
$$

where $a : Y \to A$ and $x : X \to DY$
subject to axioms asserting the commutativity of the following diagrams.

\[
E(E(a).x) \xrightarrow{e} E(Ea.x).Ty \xrightarrow{e_1} (Ea.Tx).Ty \\
E(e.1) \downarrow \quad \downarrow \alpha \\
E((Ea.Tx).y) \xrightarrow{E\alpha} E(Ea.(Tx.y)) \xrightarrow{e} Ea.T(Tx.y) \xrightarrow{1.e} Ea.(Tx.Ty)
\]

\[
E(Ea.K \xrightarrow{e} Ea.TK) \quad E(Ea.x)K \xrightarrow{e_1} (Ea.Tx).K \\
Ee_0 \downarrow \quad \downarrow 1.v_0 \\
Ea \xrightarrow{\rho} Ea.1 \quad Ea.x \xrightarrow{1.k} Ea.(Tx.K)
\]

Example 6.2. In the case of a warping on a 2-category, an algebra is the same as an algebra, in the sense of [10, Section 4], for the corresponding pseudo mw-monad. Explicitly, in the definition of [10] the functor \((\quad)^h\) is our \(E\), while the 2-cells \(A_h\) and \(A_{g,h}\) are inverses of the components of our \(e_0\) and \(e\). Our three axioms are the axioms 6, 2, and 3 of [10]; while the remaining three axioms of [10] amount to naturality of \(e\) and \(e_0\).

Proposition 6.3. In the definition of algebra for a warping on a bicategory, the third axiom is a consequence of the other two.

Proof. We write as if the bicategory were strict. Consider the following diagram

\[
Ea.x \xrightarrow{e_0} E(Ea.x).K \xrightarrow{e_1} Ea.Tx.K \\
E(e_0) \downarrow \quad \downarrow e_0 \\
E(Ea.x).K \xrightarrow{Ee_0.1} E(E(Ea.x).K) \xrightarrow{E(e_1).1} E(Ea.Tx.K).K \\
E(Ea.x).K \xleftarrow{1.v_0.1} E(Ea.x).TK.K \xrightarrow{e_1} Ea.Tx.K \xleftarrow{1.v.1} Ea.T(Tx.K).K
\]

in which the large region in the bottom right corner commutes by the first equation (“the pentagon”) and the left central region commutes by the second
equation ("the unit condition"), while all other regions commute by naturality.

Since e_0 and $e.1$ are invertible we may cancel them, and conclude that the upper path in the diagram

$$
$$

is the identity. But the lower path is also the identity, by the unit condition for the warping, so the two paths agree. Using invertibility of v and v_0 we can cancel to obtain commutativity of the triangular region on the left. Thus the central triangular region in the diagram

also commutes, while the other regions commute by naturality. Cancelling $1.Tk.1$ gives the last equation.

Corollary 6.4. The third axiom in the definition of [10, Section 4] is redundant.

7. Formal mw-monads

Monads can be defined in any bicategory [2] or indeed any skew bicategory, and the formal theory of monads in bicategories is well-understood [13]. If B is an object of a bicategory \mathcal{K}, there is a monoidal structure on $\mathcal{K}(B,B)$ with tensor product given by composition, and a monad in \mathcal{K} on the object B is a monoid in $\mathcal{K}(B,B)$.

- 255 -
Here we sketch a setting for the formal theory of mw-monads. This has similarities with [1], although it differs both in the motivation and in the detail.

We write as if the bicategory K were strict. Let $i \dashv i^*$ be an adjunction in K, with $i: A \to B$. Then there is a skew monoidal structure on the hom-category $K(A, B)$, with tensor product $g \otimes f$ given by $gi^* f$, and unit i. By associativity of K we have $(h \otimes g) \otimes f = hi^* gi^* f = h \otimes (g \otimes f)$, while λ and ρ are defined by $i \otimes f = ii^* f \xrightarrow{\varepsilon f} f \quad f \xrightarrow{f \eta} fi^* = f \otimes i$

using the unit and counit of the adjunction $i \dashv i^*$.

A monoid in $K(A, B)$ consists of an arrow $d: A \to B$ equipped with maps $K: i \to d$ and $T: di^* d \to d$, satisfying the following three equations.

\[
\begin{array}{ccc}
ii^* d \xrightarrow{di^* T} di^* d & ii^* d \xrightarrow{T} di^* d & di^* i \xrightarrow{K11} di^* d \\
\downarrow{11T} & \downarrow{T} & \downarrow{1} \\
di^* d \xrightarrow{T} d & d \xrightarrow{T} d & d \xrightarrow{T} d
\end{array}
\]

Composition with i defines a functor $u = K(i, 1): K(B, B) \to K(A, B)$.

For $f, g: B \to B$ we have

\[
u(g) \otimes u(f) = gii^* f i \xrightarrow{\varepsilon i 11} gfi \xrightarrow{1 11} u(gf)
\]

while $u(1) = i$; this makes u into a (normal) monoidal functor. In particular, it sends monoids to monoids; that is, monads on B to monoids in $K(A, B)$.

Example 7.1. Let K be the bicategory of profunctors. Recall that any functor $f: A \to B$ defines a profunctor $f_*: A \to B$ defined by $f_*(b, a) = B(b, fa)$, and that f_* has a right adjoint f^* defined by $f^*(a, b) = B(fa, b)$; we often write f for f_*. Let A be the discrete category on the same set of objects as B, and let i be the inclusion. Then to give a functor $d: A \to B$ and a 2-cell $K: i \to d$ in K is to give, for each object x of B, an object dx and a morphism $K: x \to dx$. To give $T: di^* d \to d$ is to give morphisms

\[
\int_{y \in A, a \in B} B(b, dy) \times B(iy, a) \times B(a, dx) \to B(b, dx)
\]
natural in $b \in B$ and $x \in A$. Now naturality in x and y say nothing, since A is discrete; while naturality in a and b reduce this, by Yoneda, to giving maps
\[T : B(iy, dx) \to B(dy, dx). \]
The three axioms for a monoid in $\mathcal{K}(A, B)$ are exactly the three axioms for an mw-monad. Thus a functor $A \to B$ is a monoid in $\mathcal{K}(A, B)$ precisely when it is an mw-monad. Moreover, given this identification, the monoidal functor $u = \mathcal{K}(i, B)$ sends a monad on B to the corresponding mw-monad.

Motivated by this example, we consider monoids in $\mathcal{K}(A, B)$ as our formal notion of mw-monad; of course monoids in $\mathcal{K}(B, B)$ are our formal notion of monad. (This notion of mw-monad depends on A and i, somewhat as in the treatment of [1].)

In order to compare monads with mw-monads in this formal context, we should therefore compare monoids in $\mathcal{K}(B, B)$ with monoids in $\mathcal{K}(A, B)$. In the following section we propose a more general setting in which to perform this comparison.

8. Normalization

In this section we show that, under mild conditions, a skew monoidal category C can be replaced by a right normal skew monoidal category, meaning one for which the right unit map ρ is invertible. Furthermore, the two skew monoidal categories have equivalent categories of monoids. We use this to complete the comparison between monads and mw-monads begun in the previous section.

Let C be a skew monoidal category with tensor \otimes and unit I; we shall often write XY for $X \otimes Y$. Suppose that C has reflexive coequalizers, and that these are preserved by tensoring on the right. The functor $- \otimes I : C \to C$ given by tensoring on the right with the unit I underlies a monad (see [15]) with the maps
\[
(X \otimes I) \otimes I \xrightarrow{\alpha} X \otimes (I \otimes I) \xrightarrow{1 \otimes \lambda} X \otimes I \quad X \xrightarrow{\rho} X \otimes I
\]
defining the components of the multiplication and unit. Write C^I for the category of algebras for the monad; we call its objects I-modules. This has reflexive coequalizers, formed as in C.

- 257 -
If \((Y, y)\) is an \(I\)-module, and \(X\) an arbitrary object of \(C\), then \(X \otimes Y\) becomes an \(I\)-module via the action
\[
(XY)_I \xrightarrow{\alpha} X(YI) \xrightarrow{1y} XY,
\]
with associativity and unit axioms proved using the following diagrams.

Given \(I\)-modules \((X, x)\) and \((Y, y)\), we may form the reflexive coequalizer
\[
\begin{array}{ccc}
(XIY) & \xrightarrow{\rho 1} & XY \\
\alpha \downarrow & & \downarrow q \\
X(IY) & \xrightarrow{x1} & X \wedge Y
\end{array}
\]
in \(C\), and this lifts to a coequalizer in the category of \(I\)-modules, whose object-part involves an action \(c: (X \wedge Y)_I \to X \wedge Y\). This defines a functor
\(\wedge: \mathcal{C}^I \times \mathcal{C}^I \to \mathcal{C}^I\). By commutativity of the diagram

\[
\begin{array}{c}
\begin{array}{c}
((X \wedge Y) \wedge Z) \\
\end{array} \xrightarrow{\alpha_1} X((I \wedge Y)Z) \\
\end{array}
\]

there is a unique induced \(\alpha_1: (X \wedge Y)Z \to X \wedge (Y \wedge Z)\) whose composite with \(q1: (XY)Z \to (X \wedge Y)Z\) is \(q1\alpha\). The various regions of the diagram are easily seen to commute, thus the exterior does so. Cancel the epimorphism \((q1)1\), and deduce the commutativity of the diagram which guarantees
that \(\alpha_1 \) factorizes uniquely through \(q: (X \land Y)Z \to (X \land Y) \land Z \) to give a morphism \(\alpha': (X \land Y) \land Z \to X \land (Y \land Z) \) making the triangle in the diagram

\[
\begin{array}{ccc}
(XY)Z & \xrightarrow{q_1} & (X \land Y)Z \\
\downarrow{\alpha} & & \downarrow{\alpha_1} \\
X(YZ) & \xrightarrow{1q} & X(Y \land Z)
\end{array}
\]

commute. The larger region on the left commutes by definition of \(\alpha_1 \), and so the exterior commutes.

The resulting \(\alpha' \) is clearly natural, and commutativity of the pentagon for \(\alpha \) implies commutativity of the pentagon for \(\alpha' \).

Commutativity of the diagrams

\[
\begin{array}{ccc}
(II)I & \xrightarrow{\alpha} & I(II) \\
\downarrow{\lambda_1} & & \downarrow{1} \\
II & \xrightarrow{\lambda} & I
\end{array}
\]

shows that \(\lambda: II \to I \) makes \(I \) into an \(I \)-module.

Commutativity of

\[
\begin{array}{ccc}
(II)X & \xrightarrow{\lambda} & IX \\
\downarrow{\alpha} & & \downarrow{\lambda} \\
I(IX) & \xrightarrow{1\lambda} & IX \\
\downarrow{1\lambda} & & \downarrow{\lambda} \\
IX & \xrightarrow{\lambda} & X
\end{array}
\]

shows that \(\lambda: IX \to X \) factorizes uniquely through \(q: IX \to I \land X \) to give a map \(\lambda': I \land X \to X \).

On the other hand, the diagram

\[
\begin{array}{ccc}
(XI)I & \xleftarrow{\rho} & XI \\
\downarrow{x1} & & \downarrow{x} \\
X(II) & \xleftarrow{\alpha} & X
\end{array}
\]
is a split coequalizer in \(\mathcal{C} \), and the solid part is a fork in \(\mathcal{C}^I \), thus is a coequalizer in \(\mathcal{C}^I \), and so exhibits \(X \) itself as \(X \land I \). Rather than identify \(X \land I \) with \(X \), though, we let \(\rho' \) be the composite

\[
X \xrightarrow{\rho} XI \xrightarrow{q} X \land I
\]

and note that this is invertible.

We now show that \(\alpha', \rho', \) and \(\lambda' \) make \(\mathcal{C}^I \) into a skew monoidal category. We have already observed that the pentagon commutes, so we turn to the four remaining axioms.

Compatibility of \(\alpha' \) and \(\rho' \) follows from the corresponding condition for \(\alpha \) and \(\rho \), and commutativity of the diagrams

\[
\begin{array}{c}
\begin{array}{c}
XY \xrightarrow{\rho} (XY)I \xrightarrow{\alpha} X(YI)
\end{array}
\quad
\begin{array}{c}
XY \xrightarrow{1\rho} X(YI)
\end{array}
\end{array}
\quad
\begin{array}{c}
\begin{array}{c}
X \land Y \xrightarrow{\rho} (X \land Y)I \xrightarrow{\lambda'} X \land (Y \land I)
\end{array}
\quad
\begin{array}{c}
X \land Y \quad \begin{array}{c}1 \land \rho' \end{array} \quad X \land (Y \land I)
\end{array}
\end{array}
\]

Compatibility of \(\alpha' \) and \(\lambda' \) follows from the corresponding condition for \(\alpha \) and \(\lambda \), and commutativity of the diagrams

\[
\begin{array}{c}
\begin{array}{c}
(I \land X)Y \xrightarrow{\alpha} I(XY)
\end{array}
\quad
\begin{array}{c}
(IX)Y
\end{array}
\end{array}
\quad
\begin{array}{c}
\begin{array}{c}
(I \land X)Y \xrightarrow{\lambda} XY
\end{array}
\quad
\begin{array}{c}
(IX)Y \xrightarrow{\lambda_1} XY
\end{array}
\end{array}
\quad
\begin{array}{c}
\begin{array}{c}
(I \land X)Y \xrightarrow{\lambda'} X \land Y
\end{array}
\quad
\begin{array}{c}
(IX)Y \xrightarrow{\lambda' \land 1} X \land Y
\end{array}
\end{array}
\]

\[\text{- 261 -}\]
For the triple compatibility condition, observe that the diagram

\[
\begin{array}{ccc}
XY & \xrightarrow{q} & X \wedge Y \\
\downarrow_{\rho^1} & \nearrow_{\rho'^1} & \nearrow_{\rho' \wedge 1} \\
(X \wedge I)Y & \xrightarrow{q_1} & (X \wedge I) \wedge Y \\
\downarrow_{\alpha} & & \downarrow_{\alpha'} \\
X(IY) & \xrightarrow{1q} & X \wedge (I \wedge Y) \\
\downarrow_{1\lambda} & \swarrow_{1\lambda'} & \swarrow_{1 \wedge \lambda'} \\
XY & \xrightarrow{q} & X \wedge Y \\
\end{array}
\]

commutes and that \(q \) is epi; then the axiom for \(C^I \) follows from that for \(C \).

Finally compatibility of \(\lambda' \) and \(\rho' \) follows from commutativity of

\[
\begin{array}{ccc}
I \wedge I & \xrightarrow{q} & X \wedge (I \wedge Y) \\
\downarrow_{\rho'} & \nearrow_{\lambda'} & \nearrow_{\lambda} \\
I & \xrightarrow{1} & II \\
\end{array}
\]

This now proves that \(C^I \) is skew monoidal; indeed it is a right normal skew monoidal category, in the sense that \(\rho \) is invertible. The forgetful functor \(U : C^I \to C \) is a monoidal functor, with \(U_2 : U(X, x) \otimes U(Y, y) \to U((X, x) \wedge (Y, y)) \) given by the quotient map \(q : XY \to X \wedge Y \), and \(U_0 : I \to U(I, \lambda) \) the identity.

This process is universal, in the sense that if \(D \) is any right normal skew monoidal category and \(\mathcal{M} : D \to C^I \) a monoidal functor, then \(\mathcal{M} \) factorizes uniquely through \(U \) as a skew monoidal functor \(\mathcal{N} : D \to C^I \). For each object \(X \in D \), we have an \(I \)-module structure on \(MX \), given by

\[
MX \otimes I \xrightarrow{1 \otimes M_0} MX \otimes MI \xrightarrow{M_2} M(X \otimes I) \xrightarrow{M(\rho^{-1})} MX
\]

and this is natural in \(X \), so that \(\mathcal{M} \) does lift to functor \(\mathcal{N} : D \to C^I \) with \(UN = \mathcal{M} \).
Furthermore, by commutativity of

\[
\begin{array}{ccc}
MX.I \cdot MY & \xrightarrow{(1M_0)1} & MX.MI \cdot MY \\
\downarrow{\alpha} & & \downarrow{\alpha} \\
MX.(I.MY) & \xrightarrow{1(M_01)} & MX.(MI.MY) \\
1\lambda & & M_2 \\
MX.MY & \xleftarrow{1.M\lambda} & MX.M(IY) \\
\downarrow{M_2} & & \downarrow{M_2} \\
M(X.Y) & \xrightarrow{M(1\lambda)} & M(XY) \\
\end{array}
\]

we see that \(M_2\) passes to the quotient to give a map \(N_2: NX \wedge NY \to N(XY)\); while \(M_0\) underlies a map \(N_0: I \to NI\).

Since monoids in a skew monoidal category are just monoidal functors out of the terminal skew monoidal category, and this terminal skew monoidal category is right normal (in fact monoidal), it follows that the monoids in \(C^I\) are the same as the monoids in \(C\).

We summarize this as follows:

Theorem 8.1. Let \(C\) be a skew monoidal category, and suppose that \(C\) has coequalizers of reflexive pairs of the form (8.1), and that these are preserved by tensoring on the right. Then the category \(C^I\) of right I-modules is a right normal skew monoidal category, and the forgetful functor \(U: C^I \to C\) is a normal monoidal functor. Furthermore, it is universal, in the sense that for any right normal skew monoidal category \(D\), composition with \(U\) induces an equivalence between the category of monoidal functors from \(D\) to \(C^I\) and the category of monoidal functors from \(D\) to \(C\).

We call \(C^I\) the **right normalization** of the skew monoidal category \(C\).

The next result is our promised formal approach to the comparison of monads and mw-monads.

Theorem 8.2. Let \(i: A \to B\) be a morphism in a bicategory \(K\), and suppose that \(i\) has a right adjoint \(i^{-1}\) and is opmonadic (of Kleisli type). Suppose further that for any \(h: B \to B\), the functor \(K(h, B): K(B, B) \to K(B, B)\) preserves any existing coequalizers of reflexive pairs. Then the skew monoidal category \(K(A, B)\) satisfies the conditions of the previous
theorem, and the right normalization $K(A, B)^I$ is given by $K(B, B)$. Thus monoids in $K(A, B)$ are equivalent to monoids in $K(B, B)$.

Proof. The adjunction $i \dashv i^*$ induces an adjunction $K(i^*, B) \dashv K(i, B)$, which in turn induces a monad on $K(A, B)$, and this monad is precisely that given by tensoring on the right with the unit i of $K(A, B)$. Since i is opmonadic, $K(i, B)$ is monadic, and so $K(B, B)$ is equivalent to the category of I-modules.

Using again the fact that i is opmonadic, the diagram

$$
\begin{array}{c}
gii^* \xrightarrow{g \epsilon i^*} gii^* \xrightarrow{g \epsilon} g
\end{array}
$$

is a coequalizer in $K(B, B)$, and now composing on the right with fi, we see that the required coequalizers (8.1) exist, with $gi \land fi = (gf)i$.

Thus the normalization does exist, and since $u: K(B, B) \rightarrow K(A, B)$ is a monoidal functor with right normal domain (in fact monoidal domain), we have the comparison $v: K(B, B) \rightarrow K(A, B)^I$. From the construction of v it is clear that this is a monoidal equivalence.

Example 8.3. Consider the case of Example 7.1, where K is the bicategory of profunctors, and $i: A \rightarrow B$ is the inclusion of the discrete category A on the same set of objects as B. Since i is the identity on objects it is indeed opmonadic, while $K(A, B)$ is cocomplete with colimits preserved by tensoring on either side, thus the conditions of the theorem hold. We recover the correspondence between monads and mw-monads by observing that a profunctor $g: B \rightarrow B$ is a functor if and only if the composite $gi: A \rightarrow B$ is one.

Acknowledgements

Both authors gratefully acknowledge the support of the Australian Research Council Discovery Grant DP130101969; Lack acknowledges with equal gratitude the support of an Australian Research Council Future Fellowship.
References

Stephen Lack and Ross Street
Department of Mathematics
Macquarie University NSW 2109
Australia
steve.lack@mq.edu.au
ross.street@mq.edu.au
Abstract. We construct the Weil functor T^A corresponding to a general Weil algebra $A = K \oplus N$: this is a functor from the category of manifolds over a general topological base field or ring K (of arbitrary characteristic) to the category of manifolds over A. This result simultaneously generalizes results known for ordinary, real manifolds (cf. [KMS93]), and results obtained in [Be08] for the case of the higher order tangent functors ($A = T^k K$) and in [Be13] for the case of jet rings ($A = \mathbb{K}[X]/(X^{k+1})$). We investigate some algebraic aspects of these general Weil functors (“K-theory of Weil functors”, action of the “Galois group” $\text{Aut}_K(\mathbb{A})$), which will be of importance for subsequent applications to general differential geometry.

Keywords. Weil functor, Taylor expansion, scalar extension, polynomial bundle, jet, differential calculus.

Mathematics Subject Classification (2010). 13A02, 13B02, 15A69, 18F15, 58A05, 58A20, 58A32, 58B10, 58B99, 58C05.
1. Introduction

The topic of the present work is the construction and investigation of general Weil functors, where the term “general” means: in arbitrary (finite or infinite) dimension, and over general topological base fields or rings. Compared to the (quite vast) existing literature on Weil functors (see, e.g., [KMS93, K08, K00, KM04]), this adds two novel viewpoints: on the one hand, extension of the theory to a very general context, including, for instance, base fields of positive characteristic, and on the other hand, introduction of the point of view of scalar extension, well-known in algebraic geometry, into the context of differential geometry. This aspect is new, even in the context of usual, finite-dimensional real manifolds. We start by explaining this item.

A quite elementary approach to differential calculus and -geometry over general base fields or -rings K has been defined and studied in [BGN04, Be08]; see [Be11] for an elementary exposition. The term “smooth” always refers to the concept explained there, and which is called “cubic smooth” in [Be13]. The base ring K is a commutative unital topological ring such that K^\times, the unit group, is open dense in K, and the inversion map $K^\times \to K, \ t \mapsto t^{-1}$ is continuous. For convenience, the reader may assume that K is a topological k-algebra over some topological field k, where k is his or her favorite field, for instance $k = \mathbb{R}$, and one may think of K as $\mathbb{R} \oplus j\mathbb{R}$ with, for instance, $j^2 = -1$ ($K = \mathbb{C}$), or $j^2 = 1$ (the “para-complex numbers”) or $j^2 = 0$ (“dual numbers”). In our setting, the analog of the “classical” Weil algebras, as defined, e.g., in [KMS93], is as follows:

Definition 1.1. A Weil K-algebra is a commutative and associative K-algebra A, with unit 1, of the form $A = K \oplus N_A$, where $N = N_A$ is a nilpotent ideal. We assume, moreover, N to be free and finite-dimensional over K. We equip A with the product topology on $N \cong K^n$ with respect to some (and hence any) K-basis.

As is easily seen (Lemma 3.2), A is then again of the same kind as K, hence it is selectable as a new base ring. Since an interesting Weil algebra A is never a field, this explains why we work with base rings, instead of fields. Our main results may now be summarized as follows (see Theorems 3.6 and 4.4 for details):
Theorem 1.2. Assume $A = \mathbb{K}\oplus N$ is a Weil \mathbb{K}-algebra. Then, to any smooth \mathbb{K}-manifold M, one can associate a smooth manifold $T^A M$ such that:

1. the construction is functorial and compatible with cartesian products,

2. $T^A M$ is a smooth manifold over A (hence also over \mathbb{K}), and for any \mathbb{K}-smooth map $f : M \to N$, the corresponding map $T^A f : T^A M \to T^A N$ is smooth over A,

3. the manifold $T^A M$ is a bundle over the base M, and the bundle chart changes in M are polynomial in fibers (we call this a polynomial bundle, cf. Definition 4.1),

4. if M is an open submanifold U of a topological \mathbb{K}-module V, then $T^A U$ can be identified with the inverse image of U under the canonical map $V_A \to V$, where $V_A = V \otimes_{\mathbb{K}} A$ is the usual scalar extension of V; if, in this context, $f : U \to W$ is a polynomial map, then $T^A f$ coincides with the algebraic scalar extension $f_A : V_A \to W_A$ of f.

The Weil functor T^A is uniquely determined by these properties.

The Weil bundles $T^A M$ are far-reaching generalizations of the tangent bundle TM, which arises in the special case of the “dual numbers over \mathbb{K}”, $A = T\mathbb{K} = \mathbb{K}\oplus \varepsilon \mathbb{K}$ ($\varepsilon^2 = 0$). The theorem shows that the structure of the Weil bundle $T^A M$ is encoded in the ring structure of A in a much stronger form than in the “classical” theory (as developed, e.g., in [KMS93]): the manifold $T^A M$ plays in all respects the rôle of a scalar extension of M, and hence T^A can be interpreted as a functor of scalar extension, and we could write $M_A := T^A M$ – an interpretation that is certainly very common for mathematicians used to algebraic geometry, but rather unusual for someone used to classical differential geometry; in this respect, our results are certainly closer to the original ideas of André Weil ([W53]) than much of the existing literature. In subsequent work we will exploit this link between the “algebraic” and the “geometric” viewpoints to investigate features of differential geometry, most notably, bundles, connections, and notions of curvature.

The algebraic point of view naturally leads to emphasize in differential geometry certain aspects well-known from the algebraic theory. First, Weil
algebras and -bundles form a sort of “\(K\)-theory” with respect to the operations

1. tensor product: \(A \otimes_K B \cong K \oplus (N_A \oplus N_B \oplus N_A \otimes N_B)\),

2. Whitney sum: \(A \oplus_K B := (A \otimes_K B)/(N_A \otimes_K N_B) \cong K \oplus N_A \oplus N_B\).

Whereas (2) corresponds exactly to the Whitney sum of the corresponding bundles over \(M\), one has to be a little bit careful with the bundle interpretation of (1) (Theorem 4.5): Weil bundles are in general not vector bundles, hence there is no plain notion of “tensor product”; in fact, (1) rather corresponds to composition of Weil functors:

\[T^{A \otimes B} M \cong T^B(T^A M).\]

Second, following the model of Galois theory, for understanding the structure of the Weil bundle \(T^A M\) over \(M\), it is important to study the automorphism group \(\text{Aut}_K(\mathfrak{A})\). Indeed, by functoriality, any automorphism \(\Phi\) of \(\mathfrak{A}\) induces canonically a diffeomorphism \(\Phi_M : T^A M \to T^A M\) which commutes with all \(\mathfrak{A}\)-tangent maps \(T^A f\), for any \(f\) belonging to the \(K\)-diffeomorphism group of \(M\), \(\text{Diff}_K(M)\). Thus we have two commuting group actions on \(T^A M\): one of \(\text{Aut}_K(\mathfrak{A})\) and the other of \(\text{Diff}_K(M)\). An important special case is the one of a graded Weil algebra (Chapter 5; in [KM04] the term homogeneous Weil algebra is used): in this case, there exist “one-parameter subgroups” of automorphisms, and the Weil algebra carries as new structure a “composition like product” similar to the composition of formal power series (Theorem 5.7).

In [Be08] and [Be13], two prominent cases of Weil functors have been studied, and the present work generalizes these results: the higher order tangent functors \(T^k\), corresponding to the iterated tangent rings, \(T^{k+1}\mathbb{K} := T(T^k\mathbb{K})\), and the jet functors \(J^k\), corresponding to the (holonomic) jet rings \(J^k\mathbb{K} := \mathbb{K}[X]/(X^{k+1})\). Since both cases play a key rôle for the proof of our general result, we recall (and slightly extend) the results for these cases (see Appendices A and B). In particular, we describe in some detail the canonical \(\mathbb{K}^\times\)-action, which appears already in the framework of difference calculus, and which gives rise to the natural grading of these Weil algebras.
The core part for the proof of Theorem 1.2 is a careful investigation of the relation between two foundational concepts, namely those of jet, and of Taylor expansion. As is well-known in the classical setting (see, e.g., [Re83]), both concepts are essentially equivalent, but the jet-concept is of an “invariant” or “geometric” nature, hence makes sense independently of a chart, whereas Taylor expansions can be written only with respect to a chart, hence are not of “invariant” nature. This is reflected by a slight difference in their behaviour with respect to composition of maps: for jets we have the “plainly functorial” composition rule

\[J^k_x(g \circ f) = J^k_{f(x)}g \circ J^k_xf, \]

(1.1)

whereas for Taylor polynomials (which we take here without constant term) we have truncated composition of polynomials:

\[\text{Tay}^k_x(g \circ f) = (\text{Tay}^k_{f(x)}g \circ \text{Tay}^k_xf) \mod (\text{deg} > k). \]

(1.2)

This lack of functoriality is compensated by the advantage that, like every polynomial, the Taylor polynomial always admits algebraic scalar extensions, so that the \(k \)-th order Taylor polynomial \(P = \text{Tay}^k_xf : V \to W \) of a \(\mathbb{K} \)-smooth function \(f : V \supset U \to W \) at \(x \in U \) extends naturally to a polynomial \(P_A : V \otimes \mathbb{K} A \to W \otimes \mathbb{K} A \). Our general construction of Weil functors combines both extension procedures: in a first step, based on differential calculus reviewed in Appendices A and B, we construct the jet functor \(J^k \), which associates to each smooth map \(f \) its (“simplicial”) \(k \)-jet \(J^k_xf \). Using this invariant object, we define in a second step the Taylor polynomial \(\text{Tay}^k_xf \) at \(x \) by a “chart dependent” construction (Section 2.2), and then we prove the transformation rule (1.2) (Theorem 2.13). Note that, in the classical case, our Taylor polynomial \(\text{Tay}^k_xf \) coincides of course with the usual one, but we do not define it in the usual way in terms of higher order differentials (since we then would have to divide by \(j! \), which is impossible in arbitrary characteristic). In a third step, we consider the algebraic scalar extension of the Taylor polynomial from \(\mathbb{K} \) to \(\mathcal{N} \): if the degree \(k \) is higher than the order of nilpotency of \(\mathcal{N} \), then

\[T^k_xf := (\text{Tay}^k_xf)_\mathcal{N} : V_\mathcal{N} := V \otimes \mathcal{N} \to W_\mathcal{N} \]

(1.3)

satisfies a plainly functorial transformation rule, so that finally the Weil functor \(T^k \) can be defined by \(T^k f : U \times V_\mathcal{N} \to W \times W_\mathcal{N}, (x,y) \mapsto \)
This strategy requires to develop some general tools on continuity and smoothness of polynomials, which we relegate to Appendix C.

From the viewpoint of analysis, the interplay between jets and Taylor polynomials is reflected by the interplay between (generalized) difference quotient maps and (various) remainder conditions for the remainder term in a “limited expansion” of a function f around a point x. The first aspect is functorial and well-behaved in arbitrary dimension, hence is suitable for defining our general differential calculus; it implies certain radial limited expansions, together with their multivariable versions, which represent the second aspect, and which are the starting point for defining Taylor polynomials (Chapter 2).

This work is organized in four main chapters and three appendices, as follows:

2. Taylor polynomials, and their relation with jets
3. Construction of Weil functors
4. Weil functors as bundle functors on manifolds
5. Canonical automorphisms, and graded Weil algebras
Appendix A: Difference quotient maps and \mathbb{K}^\times-action
Appendix B: Differential calculi
Appendix C: Continuous polynomial maps, and scalar extensions

The results of the present work are part of the thesis [So12], and they gave rise to further developments presented in [Be14]. Recently, we learned about the work of V.V. Shurygin (see [Sh02] for an overview); although its framework is different from ours, it has important links with the approach presented here.

Notation. As already mentioned, \mathbb{K} is a commutative unital topological base ring, with dense unit group \mathbb{K}^\times, and A is a Weil \mathbb{K}-algebra. Concerning “cubic” and “simplicial” differential calculus, specific notation is explained in Appendices A and B. In particular, superscripts of the form $[\cdot]$ refer to “cubic”, and superscripts of the form $\langle \cdot \rangle$ refer to “simplicial” differential calculus. In general, the “cubic” notions are stronger than the “simplicial” ones (“cubic implies simplicial”, see Theorem B.6). As a rule, boldface variables are used for k-tuples or n-tuples, such as, e.g., $v = (v_1, \ldots, v_k)$, $0 = (0, \ldots, 0)$.
2. Taylor polynomials, and their relation with jets

2.1 Limited expansions

Let V,W be topological \mathbb{K}-modules and $f : U \to W$ a map defined on an open set $U \subset V$. Notation concerning extended domains, like $U^{[1]}$ and $U^{[k]}$, is explained in Appendix A.

Definition 2.1. We say that f admits radial limited expansions if there exist continuous maps $a_i : U \times V \to W$ and $R_k : U^{[1]} \to W$ such that, for $(x,v,t) \in U^{[1]}$,

$$f(x + tv) = f(x) + \sum_{i=1}^{k} t^i a_i(x,v) + t^k R_k(x,v,t)$$

and the remainder condition $R_k(x,v,0) = 0$ hold. We say that f admits multi-variable radial limited expansions if there exist continuous maps $b_i : U \times V^k \to W$ and $S_k : U^{[k]} \to W$, such that, for $v = (v_1, \ldots, v_k) \in V^k$ with $x + \sum_{i=1}^{k} t^i v_i \in U$,

$$f(x + tv_1 + \ldots + t^k v_k) = f(x) + \sum_{i=1}^{k} t^i b_i(x, v_1, \ldots, v_i) + t^k S_k(x, v; 0, \ldots, 0, t)$$

and the remainder condition $S_k(x, v; 0, \ldots, 0, 0) = 0$ hold.

Taking $0 = v_2 = v_3 = \ldots = v_k$, the multi-variable radial condition implies the radial condition. For the next result, cf. Appendix B for definition of the class $C^{(k)}$.

Theorem 2.2 (Existence and uniqueness of limited expansions). Assume $f : U \to W$ is of class $C^{(k)}$. Then f admits limited expansions of both types from the preceding definition, and such expansions are unique, given by

$$b_i(x, v_1, \ldots, v_i) = f^{(i)}(x, v_1, \ldots, v_i; 0),$$

$$a_i(x, h) = f^{(i)}(x, h, 0; 0).$$

Proof. Existence follows from Theorem B.5, by letting there $s_0 = s_1 = \ldots = s_{k-1} = 0$ and $s_k = t$. Uniqueness is proved as in [BGN04], Lemma 5.2. \qed
Recall from Appendix B the definition of the class $C^{(k)}$, and the fact that $C^{(k)}$ implies $C^{(k)}$ (Theorem B.6).

Corollary 2.3. Assume f is of class $C^{[2k]}$. Then, for $i = 1, \ldots, k$, the normalized differential

$$a_i(x, \cdot) : V \to W, h \mapsto D^i_h f(x) := a_i(x, h)$$

is continuous and polynomial (in the sense of Definition C.2), homogeneous of degree i, hence smooth.

Proof. See [Be13], Cor. 1.8. The last statement follows from Theorem C.3.

\square

2.2 Taylor polynomials

We can now define Taylor polynomials, which are the core of the construction of Weil functors.

Definition 2.4. Let $f : U \to W$ be of class $C^{[2k]}$ and fix $x \in U$. The polynomial

$$\text{Tay}^k_x f : V \to W, h \mapsto \sum_{i=1}^k D^i_h f(x) = \sum_{i=1}^k a_i(x, h)$$

is called the k-th order Taylor polynomial of f at the point x.

Theorem 2.5. If $f : U \to W$ is of class $C^{[2\ell]}$, then for all $k \leq \ell$, $\text{Tay}^k_x f$ is a smooth polynomial map of degree at most k, without constant term. If, moreover, f is itself a polynomial map of degree at most k, then $\text{Tay}^k_x f$ coincides with f, up to the constant term:

$$f = f(0) + \text{Tay}^k_0 f,$$

and the homogeneous part f_i of f is equal to $a_i(0, \cdot) = f^{(i)}(0, \cdot; 0, 0)$.

Proof. The fact that $\text{Tay}^k_x f$ is smooth and polynomial follows from Corollary 2.3. Next, assume that f is a homogeneous polynomial, say, of degree j with $j \leq k$. Uniqueness of the radial Taylor expansion (Theorem 2.2) implies that, for every homogeneous map of degree j and of class $C^{[2k]}$, we have $f(h) = f^{(j)}(0, h, 0; 0)$ (see [Be08], Cor. 1.12 for the proof in case $j = 2$, which generalizes without changes), whence the claim. \square
The radial limited expansion can now be written as

$$f(x + th) = f(x) + \text{Tay}_x^k f(th) + t^k R_k(x, h, t).$$ \tag{2.1}

If the integers are invertible in \mathbb{K}, then, by uniqueness of the expansion, it coincides with the usual Taylor expansion: $D_v^j f(x) = \frac{1}{j!} D^j f(x)(v, \ldots, v)$, see [BGN04].

2.3 Normalized differential and polynomiality

Definition 2.6. Let $f : U \rightarrow W$ be of class $C^{[2k]}$. Recall from above the definition of the normalized differential $D_v^j f(x) := (x, v, 0; 0)$. We define, for all multi-indices $\alpha \in \mathbb{N}^k$ such that $|\alpha| := \sum_i \alpha_i \leq k$, and for all $v \in V^k$, $x \in U$, the normalized polynomial differential (which is well-defined, by Corollary B.7)

$$D_{\alpha}^v f(x) := (D_{\alpha_k}^v \circ \ldots \circ D_{\alpha_1}^v) f(x).$$

The following is a generalization of Schwarz’s Lemma (Th. B.2 (iv)):

Lemma 2.7. Let $f : U \subset V \rightarrow W$ a a map of class $C^{[2k]}$. Then, for all multi-indices $\alpha \in \mathbb{N}^k$ such that $|\alpha| := \sum_i \alpha_i \leq k$, and for all $v \in V^k$, the map $D_{\alpha}^v f(x)$ does not depend on the order in which we compose the normalized differentials $D_{\alpha_i}^v$.

Proof. $D_{\alpha}^v f(x)$ is obtained, by restriction to $s = 0$, from the map

$$D_{\alpha}^v, s f(x) := (D_{\alpha_k}^v \circ \ldots \circ D_{\alpha_1}^v, s) f(x),$$

where for all $1 \leq i \leq k$, we let $D_{\alpha_i}^v, s(x) := (x, v_i, 0; s^{(i)})$. From the definition of the simplicial different quotient map, we get, for non-singular $s^{(1)}$:

$$D_{\alpha_1}^{v_1, s^{(1)}} f(x) = \sum_{j_1=0}^{\alpha_1} f(x + (s^{(1)}_j - s_0^{(1)}) v_1) \prod_{i=0, j_1, \ldots, \alpha_1} (s^{(1)}_j - s_i^{(1)}).$$

By induction, we get, for non-singular $s^{(i)}$:

$$\left(D_{\alpha_k}^{v_k, s^{(k)}} \circ \ldots \circ D_{\alpha_1}^{v_1, s^{(1)}} \right) f(x) = \sum_{j_1=0}^{\alpha_1} \ldots \sum_{j_k=0}^{\alpha_k} f(x + \sum_{\ell=1}^k (s^{(\ell)}_j - s_0^{(\ell)}) v_\ell) \prod_{i=0, j_1, \ldots, \alpha_k} (s^{(\ell)}_j - s_i^{(\ell)}).$$
Obviously, the right-hand side term does not change if we apply the operators
\(D_{\alpha_i}^{\alpha_i} s^{(i)} \) in another order. Hence, by continuity and density of \(K^\times \) in \(K \), this remains true for singular values of \(s^{(i)} \), and in particular for \(s^{(i)} = 0 \).

Theorem 2.8. Let \(f : U \to W \) be a map of class \(C^{[2k]} \). Then:

1. For all \(x \in U \) and for all multi-indices \(\alpha \in \mathbb{N}^k \) such that \(|\alpha| \leq k \), the map \(V^k \to W, \nu \mapsto D_\nu^\alpha f(x) \) is polynomial multi-homogeneous of multidegree \(\alpha \).

2. The map \(\nu \mapsto f^{(j)}(x, \nu; 0) \) is polynomial. More precisely, for all \(1 \leq j \leq k \),

\[
 f^{(j)}(x, \nu; 0) = \sum_{\alpha \in \mathbb{N}^k, \sum_{i=1}^k \alpha_i = j} D_\nu^\alpha f(x). \tag{2.2}
\]

Proof. (1) Note that \(D_\nu^\alpha f(x) = (D_{\nu_2}^{\alpha_2} \circ \ldots \circ D_{\nu_1}^{\alpha_1}) f(x) \) is polynomial homogeneous of degree \(\alpha_\nu \) in \(\nu_\nu \), by Corollary 2.3. By the previous lemma, the value of \(D_\nu^\alpha f(x) \) is independent of the order in which we compose the normalized differentials. Therefore \(D_\nu^\alpha f(x) \) is also polynomial homogeneous of degree \(\alpha_i \) in \(\nu_i \) for all \(1 \leq i \leq k \), i.e., \(\nu \mapsto D_\nu^\alpha f(x) \) is a polynomial multi-homogeneous map of multidegree \(\alpha \).

(2) On the one hand, we use the \(k \)-th order radial limited expansion, successively for each variable \(\nu_i \), \(1 \leq i \leq k \). This is well-defined (see Corollary B.7).

\[
 f \left(x + \sum_{i=1}^k t^i \nu_i \right) = f \left(x + \sum_{i=2}^k t^i \nu_i + t^1 \nu_1 \right)
 = \sum_{\alpha_1=0}^k t^{\alpha_1} D_{\nu_1}^{\alpha_1} f(x + \sum_{i=2}^k t^i \nu_i) + t^k R^1_k(x, \nu_1, t)
 = \sum_{\alpha_1=0}^k \sum_{\alpha_2=0}^{k-\alpha_1} t^{\alpha_1} t^{2\alpha_2} (D_{\nu_2}^{\alpha_2} \circ D_{\nu_1}^{\alpha_1}) f(x + \sum_{i=3}^k t^i)
 + t^k R^1_k(x, \nu_1, t) + t^k R^2_k(x, \nu_1, \nu_2, t)
\]
\[
= \sum_{0 \leq \alpha_1, \ldots, \alpha_k \leq k, \sum_i \alpha_i \leq k} t^{\alpha_1} \ldots t^{\alpha_k} \left(D_{v_k}^{\alpha_k} \circ \ldots \circ D_{v_1}^{\alpha_1} \right) f(x)
\]
\[
+ \sum_{i=1}^{k} t^k R_k^i (x, v_1, \ldots, v_i, t)
\]
\[
= \sum_{\alpha \in \mathbb{N}^k, |\alpha| \leq k} t^{\sum_i i \alpha_i} D_v^\alpha f(x) + t^k R_k (x, v, t),
\]
\[
= f(x) + \sum_{j=1}^{k} \sum_{\alpha \in \mathbb{N}^k, \sum_i i \alpha_i = j} t^j D_v^\alpha f(x) + t^k R_k (x, v, t),
\]
where
\[
R_k (x, v, t) := \sum_{i=1}^{k} R_k^i (x, v_1, \ldots, v_i, t) + \sum_{j > k} \sum_{\alpha \in \mathbb{N}^k, \sum_i i \alpha_i = j} t^{j-k} D_v^\alpha f(x)
\]
satisfies the remainder condition \(R_k (x, v, 0) = 0 \). On the other hand, we use the \(k \)-th order multi-variable radial limited expansion:
\[
f(x + \sum_{i=1}^{k} t^i v_i) = f(x) + \sum_{j=1}^{k} t^j f^{(j)} (x, v_1, \ldots, v_j, 0) + t^k S_k (x, v; 0, \ldots, 0, t)
\]
Relation (2.2) now follows by uniqueness of this expansion (Theorem 2.2).

Remark 2.9. If the integers are invertible in \(\mathbb{K} \), then relation (2.2) reads
\[
f^{(j)} (x, v; 0) = \sum_{\alpha \in \mathbb{N}^k, \sum_i i \alpha_i = j} \frac{d^{\alpha} f(x, v_\alpha)}{\alpha!}, \quad (2.3)
\]
where \(\alpha! := \alpha_1! \ldots \alpha_k! \) and \(v_\alpha := (v_1, \ldots, v_i, \ldots, v_k) \) (\(v_i \) appearing \(\alpha_i \) times). Indeed, \(D_v^{\alpha_1} f(x) = \frac{d^{\alpha_1} f(x)[v_1, \ldots, v_1]}{\alpha_1!} \); iterating this, and using Theorem B.2, we get
\[
D_v^{\alpha_1, \alpha_2} f(x) = \left(D_v^{\alpha_2} \circ D_v^{\alpha_1} \right) f(x) = \frac{d^{\alpha_2} \left(d^{\alpha_1} f(x)[v_1, \ldots, v_1] \right)}{\alpha_2!} (v_2, \ldots, v_2)
\]
\[
= \frac{d^{\alpha_1 + \alpha_2} f(x)[v_1, \ldots, v_1, v_2, \ldots, v_2]}{\alpha_1! \alpha_2!},
\]
and so on: by induction, we have
\[f^\alpha(x, v) = \frac{d^{(|\alpha|)}}{\alpha!} f(x, v_\alpha), \]
whence (2.3).

Note that these formulae are in keeping with the formulae given in [Be08], Chapter 8; however, the methods used there are less well adapted to the case of arbitrary characteristic.

2.4 The simplicial \(K\)-jet as a scalar extension.

Recall from Appendix B the definition of the (simplicial) \(k\)-jet of \(f\), \(J^k f\), and that \(J^k\) is a \(K\)-functor (Theorem B.4). They commute with direct products, and hence, applied to the ring \((K, +, m)\) with ring multiplication \(m\) and addition \(a\), they yield new rings, denoted by \(J^k K\), resp. \(J^0 K\). These rings have been determined explicitly in [Be13]:

\[J^k_0 K \cong K[X]/(X(X - s_1) \cdots (X - s_k)), \quad J^k K \cong K[X]/(X^{k+1}). \]

We denote the class of the polynomial \(X\) in \(J^k K\) by \(\delta\), so that \(1, \delta, \ldots, \delta^k\) is a \(K\)-basis of \(J^k K\). The following facts can be proved in a conceptual way, without using the explicit isomorphism:

Lemma 2.10. The \(K\)-algebra \(J^k K\) is \(\mathbb{N}\)-graded, i.e., of the form
\[J^k K = E_0 \oplus E_1 \oplus \ldots \oplus E_k \]
with \(E_j \cdot E_i \subseteq E_{i+j}\).

In particular, \(E_1 \oplus \ldots \oplus E_k\) is a nilpotent subalgebra.

Proof. This is a direct consequence of Theorem B.4: \(J^k m\) commutes with the canonical \(K^\times\)-action; hence this action is by ring automorphisms. Thus the eigenspaces \(E_j = \{x \in J^k K \mid \forall r \in K^\times : r.x = r^j x\}\) define a grading of \(J^k K\). \(\Box\)

The canonical projection
\[\pi^k : J^k K \to K, \quad [P(X)] \mapsto P(0) \]
is a ring homomorphism having a section \(\sigma^k : K \to J^k K\), \(t \mapsto t \cdot 1\) (classes of constant polynomials), called the canonical injection or canonical zero section. We denote by \(J^0_0 K = \langle \delta, \ldots, \delta^k \rangle\) the kernel of \(\pi^k\) (the fiber of \(\pi^k : J^k K \to K\) over 0). Note that \(J^k K\) is again a topological ring having a dense unit group; hence we can speak of maps that are smooth (or of class \(C^k\)) over this ring.
Theorem 2.11 (Simplicial Scalar Extension Theorem). If \(f : U \rightarrow W \) is smooth over \(\mathbb{K} \), then \(f \) admits a unique extension to \(J^k \mathbb{K} \)-smooth map \(F : J^k U \rightarrow J^k W \): there exists a unique map \(F : J^k U \rightarrow J^k W \) (namely, \(F = J^k f \)) such that

1. \(F \) is smooth over the ring \(J^k \mathbb{K} \), and

2. \(F(x) = f(x) \) for all \(x \in U \), that is, \(F \circ \sigma_U = \sigma_W \circ f \), where \(\sigma_U : U \rightarrow J^k U \) and \(\sigma_W : W \rightarrow J^k W \) are the canonical injections.

More precisely, any \(J^k \mathbb{K} \)-smooth map \(F : J^k U \rightarrow J^k W \) is uniquely determined by its restriction to the base \(\sigma_U(U) \subset J^k U \).

Proof. Existence has been proved in [Be13], Theorem 2.7. Uniqueness is a consequence of Theorem 2.8: for \(F \) as in the claim, we will establish an “explicit formula” in terms of its values on the base \(\sigma_U(U) \). Let \(z = (v_0, \ldots, v_k) = v_0 + \delta v_1 + \ldots + \delta^k v_k \in J^k U \), with \(x \in U \) and \(v_i \in V \).

Since \(F \) is smooth over the ring \(J^k \mathbb{K} \), we may take \(t = \delta \) and use the radial expansion of \(F \) (cf. proof of Theorem 2.8) at order \(k + 1 \): we get

\[
F(x + \sum_{i=1}^k \delta^i v_i) = F(x) + \sum_{\emptyset \neq \alpha \in \mathbb{N}^k} \sum_{i \in \alpha} \delta^\alpha_i D^\alpha v F(x),
\]

where no remainder term appears, since \(\delta^{k+1} = 0 \). This formula implies uniqueness since, as follows directly from the proof of Lemma 2.7, \(D^\alpha v F(x) \) is determined by its values on the base (i.e., if \(F(x) = 0 \) for all \(x \in U \), then \(D^\alpha v F(x) = 0 \)).

Corollary 2.12. Assume \(P, Q : V \rightarrow W \) are \(\mathbb{K} \)-smooth polynomial maps. Then:

i) \(J^k P : J^k V \rightarrow J^k W \) is a \(J^k \mathbb{K} \)-smooth \(J^k \mathbb{K} \)-polynomial map, and coincides with the algebraic scalar extension (cf. Appendix A, Definition C.6) \(P_{J^k \mathbb{K}} \) of \(P \) from \(\mathbb{K} \) to \(J^k \mathbb{K} \).

ii) The restriction \(J^k_0 P \) of \(J^k P \) to the fiber \(J^k_0 V = V \otimes_{J^k_0 \mathbb{K}} J^k_0 \mathbb{K} \) over \(0 \) is again a polynomial map, and it coincides with the algebraic scalar extension of \(P \) from \(\mathbb{K} \) to the (non-unital) ring \(J^k_0 \mathbb{K} \).
iii) Assume $P(0) = Q(0)$. Then $J^k_0P = J^k_0Q$ if, and only if, $P \equiv Q \mod (\deg > k)$ (i.e., P and Q coincide up to terms of degree $> k$).

Proof. i) The extension $P_{J^k_0}$ of P from K to J^k_0K is J^k_0-smooth, J^k_0-polynomial and satisfies the extension condition:

$$P_{J^k_0} \circ \sigma_U = \sigma_W \circ P,$$

(see Theorem C.7, with $\mathcal{A} = J^k_0K$). By the preceding theorem, the J^k_0-smooth map J^kP coincides with $P_{J^k_0}$, and thus is J^k_0-polynomial.

Item ii) is proved by the same argument. Finally, iii) follows from ii) since the algebraic scalar extension of a polynomial without constant term P from K to J^k_0K vanishes if and only if P contains no homogeneous terms of degree $j = 1, \ldots, k$. \qed

2.5 Link between Taylor polynomials and simplicial jets

It follows from Theorem 2.8 that $J^k f(x, v)$ is polynomial in v. We are going to show that this polynomial can be interpreted as a scalar extension of the Taylor polynomial $\text{Tay}^k_x f$:

Theorem 2.13 (Scalar extension of the Taylor polynomial). Assume $f, g : U \rightarrow W$ and $h : U' \rightarrow W'$ are of class $C^{[2k]}$ such that $f(x) = g(x)$ and $h(U') \subset U$. Then:

i) $\text{Tay}^k_x f = \text{Tay}^k_x g \iff J^k_x f = J^k_x g$.

ii) The polynomial map $J^k_x f$ is the scalar extension of the Taylor polynomial $\text{Tay}^k_x f$ from K to the nilpotent part $J^k_0K = \delta K \oplus \ldots \oplus \delta^k K$ of the ring $J^k K$:

$$J^k_x f = (\text{Tay}^k_x f)_{J^k_0K}.$$

iii) We have the following “chain rule for Taylor polynomials”:

$$\text{Tay}^k_x(g \circ h) = [\text{Tay}^k_{h(x)} g \circ \text{Tay}^k_x h] \mod (\deg > k)$$

(where $\mod (\deg > k)$ denotes truncated polynomial composition).
Proof. i), “\Leftarrow”: Assume $J^k_\mathcal{Z} f = J^k_\mathcal{Z} g$, then

$$Tay^k_\mathcal{Z} f(v) = \sum_{i=1}^{k} f^{(i)}(x, v; 0: 0) = \alpha \circ J^k_\mathcal{Z} f(v, 0) = \alpha \circ J^k_\mathcal{Z} f \circ \kappa(v)$$

with the maps $\alpha : J^k_0 W = W^k \to W, (w_1, \ldots, w_k) \mapsto w_1 + \ldots + w_k$ and $\kappa : V \to J^k_0 V, v \mapsto (v, 0)$. It follows that $J^k_\mathcal{Z} f = J^k_\mathcal{Z} g$ implies $Tay^k_\mathcal{Z} f = Tay^k_\mathcal{Z} g$.

i), “\Rightarrow”: Assume that $Tay^k_\mathcal{Z} f = Tay^k_\mathcal{Z} g$. Then for $\phi := f - g$ we have $\phi(x) = 0$ and $Tay^j_\mathcal{Z} \phi = 0$, i.e.,

$$\forall j = 1, \ldots, k, \forall v \in V : \phi^{(j)}(x, v; 0; 0) = 0.$$

In order to prove that $J^k_\mathcal{Z} \phi = 0$, we have to show that $\phi^{(j)}(v_0, \ldots, v_j; 0) = 0$, for all $v \in J^k U$. This is done by computing $\phi(x + tv_1 + t^2v_2 + \ldots + t^k v_k)$ in two different ways, using first the radial limited expansion, and then the multi-variable radial limited expansion: let $w := v_1 + tv_2 + \ldots + t^{k-1} v_k$; since $\phi(x) = 0$ and $Tay^j_\mathcal{Z} \phi = 0$ for $j = 1, \ldots, k$, we get

$$\phi(x + tw) = \sum_{j=0}^{k} t^j \phi^{(j)}(x, w; 0; 0) + t^k(\phi^{(k)}(x, w; 0; 0) - \phi^{(k)}(x, w; 0; 0))$$

$$= t^k(\phi^{(k)}(x, w; 0; 0) - \phi^{(k)}(x, w; 0; 0)).$$

On the other hand, the multi-variable limited expansion gives, with $x =: v_0$,

$$\phi(x + tv_1 + \ldots + t^k v_k) = \sum_{j=0}^{k} t^j \phi^{(j)}(v_0, \ldots, v_j; 0) + t^k(\phi^{(k)}(v; 0, 0; 0) - \phi^{(k)}(v; 0; 0)).$$

By uniqueness of the radial limited expansion, $\phi^{(j)}(v_0, \ldots, v_j; 0) = 0$ for $j = 1, \ldots, k$.

(ii) Choose the origin in V such that $x = 0$. Now let $f : U \to W$ be of class $C^{[2k]}$ and let $P := Tay^k_\mathcal{Z} f$. Since P coincides (up to the additive constant $P(0) = 0$) with its own Taylor polynomial (Theorem 2.5), it follows that $Tay^k_0 f = Tay^k_0 P$, whence, by (i), $J^k_0 f = J^k_0 P$, and the latter is $J^k_0 \mathbb{K}$-polynomial, and coincides with its algebraic scalar extension from \mathbb{K} to $J^k_0 \mathbb{K}$ (Corollary 2.12). Note that the homogeneous parts of degree $> k$ vanish, hence $J^k_\mathcal{Z} f$ is of degree at most k.
Let $R := \text{Tay}_0^k (g \circ h)$, $P := \text{Tay}_0^k g$, $Q := \text{Tay}_0^k h$. By (i), $J_0^k h = J_0^k Q$ and $J_0^k (g \circ h) = J_0^k P$. Using this, and functoriality of J^k, we get

$$J_0^k R = J_0^k (g \circ h) = J_0^k (g \circ J_0^k h) = J_0^k P \circ J_0^k Q = J_0^k (P \circ Q),$$

whence, by Corollary 2.12, $R \equiv P \circ Q \mod (\deg > k)$.

3. Construction of Weil functors

3.1 Weil algebras

The notion of Weil algebra has been defined in the introduction (Definition 1.1). Weil algebras form a category:

Definition 3.1. A morphism of Weil K-algebras is a continuous K-algebra homomorphism $\phi : A \to B$ preserving the nilpotent ideals: $\phi(N_A) \subset N_B$. The automorphism group of A is denoted by $\text{Aut}_K(A)$.

Lemma 3.2. The canonical projection $\pi^\alpha : A \to K$ of a Weil algebra is continuous, and so is its section $\sigma^\alpha : K \to A$, $x \mapsto x \cdot 1$. The unit group A^\times is open and dense in A, and inversion $A^\times \to A$ is continuous.

Proof. Recall first that every element of the group $\text{Gl}(n+1, K)$ acts by homeomorphisms on K^{n+1} (with product topology), hence the topology on $A = K \oplus N$ is indeed independent of the chosen K-basis. The continuity of π^α and of σ^α is then clear.

An element $x + y \in A = K \oplus N$ is invertible if, and only if, x is invertible in K: indeed, its inverse is given by

$$(x + y)^{-1} = x^{-1} \sum_{j=0}^{r} (-1)^j (x^{-1} y)^j,$$

where $r \in \mathbb{N}$ is such that $N^r = 0$. Hence $A^\times = K^\times \times N$ is open and dense in A, and inversion is seen to be continuous since inversion in K is continuous.

Example 3.3. The iterated tangent rings and the jet rings,

$$T^k K \cong K[X_1, \ldots, X_k]/(X_1^2, \ldots, X_k^2) \cong K \bigoplus_{\alpha \in \{0,1\}^k, \alpha \neq 0} \varepsilon^\alpha K,$$
where $I := I_0 := \langle X_1, \ldots, X_k \rangle$ is the ideal generated by all linear forms and $I_r := I^{r+1}$ is the ideal of all polynomials of degree greater than r. This is indeed a Weil algebra: as a \mathbb{K}-module, this quotient is the space of polynomials of degree at most r in k variables, which is free. For $k = 1$, we have $\mathbb{W}^r_1(\mathbb{K}) = J^r \mathbb{K}$, in particular, $\mathbb{W}^1_1 = T \mathbb{K}$. If \mathcal{A} is any Weil algebra, and a_1, \ldots, a_n a \mathbb{K}-basis of \mathcal{N}, then, if $\mathcal{N}^{r+1} = 0$,

\[
\mathbb{W}^r_n(\mathbb{K}) \to \mathcal{A} = \mathbb{K} \oplus \mathcal{N}, \quad P \mapsto (P(0), P(a_1, \ldots, a_n))
\]

is well-defined and defines a surjective algebra homomorphism. Thus every Weil algebra is a certain quotient of an algebra $\mathbb{W}^r_n(\mathbb{K})$. If \mathbb{K} is a field, then such a representation with minimal r and n is in a certain sense unique, with $n = \dim(\mathcal{N}/\mathcal{N}^2)$ and r the smallest integer with $\mathcal{N}^{r+1} = 0$ (see [K08], Sections 1.5 – 1.7 for the real case; the arguments carry over to a general field), but if \mathbb{K} is not a field, this will no longer hold (for instance, \mathbb{K} itself may then be a Weil algebra over some other field or ring). It goes without saying that a “classification” of Weil algebras is completely out of reach.

Lemma 3.4. Let $\mathcal{A} = \mathbb{K} \oplus \mathcal{N}$ and $\mathcal{B} = \mathbb{K} \oplus \mathcal{M}$ be two Weil algebras over \mathbb{K}.

1. The tensor product $\mathcal{A} \otimes \mathcal{B}$ (where $\otimes = \otimes_\mathbb{K}$) is a Weil algebra over \mathbb{K}, with decomposition

\[
\mathcal{A} \otimes \mathcal{B} = \mathbb{K} \oplus (\mathcal{N} \oplus \mathcal{M} \oplus \mathcal{N} \otimes \mathcal{M}).
\]

2. The “Whitney sum” $\mathcal{A} \oplus_\mathbb{K} \mathcal{B} := \mathcal{A} \otimes \mathcal{B}/\mathcal{N} \otimes \mathcal{M}$ is a Weil algebra over \mathbb{K}, with decomposition

\[
\mathcal{A} \oplus_\mathbb{K} \mathcal{B} \cong \mathbb{K} \oplus (\mathcal{N} \oplus \mathcal{M})
\]
3. Both constructions are related by the following “distributive law”
\[A \otimes_K (B \oplus B') \cong (A \otimes_K B) \oplus_A (A \otimes_K B') . \]

Proof. The tensor product of two commutative algebras is again a commutative algebra, and we have a chain of ideals \(N \otimes M \subset (N \oplus M \oplus N \otimes M) \subset A \otimes B \). Since \(A \otimes B \) is again free and finite-dimensional over \(K \), the product topology is canonically defined on \(A \otimes B \) and on the respective quotients. The given decompositions are standard isomorphisms on the algebraic level, and by the preceding remarks they are also homeomorphisms. \(\square \)

Example 3.5. The tensor product \(T^kK \otimes T^lK \) is naturally isomorphic to \(T^{k+l}K \). The direct sum \(T^kK \oplus \ldots \oplus T^kK \) (\(n \) factors) is naturally isomorphic to \(W^1_n(K) \) (the Weil algebra of \("n\)-velocities”). The Weil algebra \(T^kK \) is a quotient of \(W^1_n(K) \).

3.2 Extended domains

As a first step towards the definition of Weil functors, we have to define the *extended domains* of open sets \(U \) in a topological \(K \)-module \(V \). The algebraic scalar extension \(T^A V := V_A := V \otimes A \) decomposes as
\[V_A = V \otimes (K \oplus N) = V \oplus (V \otimes N) = V \oplus V_N, \]
and, if \(N \) is homeomorphic to \(K^n \) with respect to a \(K \)-basis of \(N \), then \(V_N \) is isomorphic, as topological \(K \)-module, to \(V^n \) with product topology. The canonical projection and its section,
\[\pi_V := \pi^A_V : V_A = V \oplus V_N \to V, \quad \sigma_V := \sigma^A_V : V \to V \oplus V_N \]
are continuous. More generally, for any non-empty subset \(U \subset V \) we define the \(A \)-extended domain to be
\[T^A U := (\pi_V)^{-1}(U) = U \times V_N \subset V_A. \]
For any \(x \in U \), the set \(T^A_x U := T^A(\{x\}) \cong V_N \subset T^A U \) is called the *fiber over \(x \).*

Let \(P : V \to W \) be a \(K \)-polynomial map, of degree at most \(k \). Let \(P_A : V_A \to W_A \) be its scalar extension from \(K \) to \(A \) and \(P^*_N : V_N \to W_N \).
be its scalar extension from \mathbb{K} to \mathcal{N}. That is, if $P = \sum_{i=0}^{k} P_i$ with P_i homogeneous of degree i, then

$$P_A(v \otimes a) = \sum_{i=0}^{k} (P_i)_A(v \otimes a) = \sum_{i=0}^{k} P_i(v) \otimes a^i$$

(cf. Appendix C). Then P_A extends P in the sense that $P_A(v \otimes 1) = P(v) \otimes 1$, i.e.,

$$P_A \circ \sigma_V = \sigma_W \circ P.$$

Note that we have also $P \circ \pi_V = \pi_W \circ P$. In the same way, we define P_N; mind that there is no commutative diagram of sections, as there is no natural section $\mathbb{K} \to \mathcal{N}$.

3.3 Construction of Weil functors

The following main result generalizes Theorem 2.11 from $J^k\mathbb{K}$ to the case of an arbitrary Weil algebra A:

Theorem 3.6. (Existence und uniqueness of Weil functors) Let $f : U \to W$ be of class $C^{[\infty]}$ over \mathbb{K} and A a Weil \mathbb{K}-algebra. Then f extends to an A-smooth map: there exists a map $T^A f : T^A U \to T^A W$ such that:

1. $T^A f$ is of class $C^{[\infty]}_A$,

2. $T^A f \circ \sigma_U = \sigma_W \circ f$, i.e., $T^A f(x, 0) = (f(x), 0)$ for all $x \in U$,

3. $\pi_W \circ T^A f = f \circ \pi_U$.

The map $T^A f$ is uniquely determined by properties (1) and (2): if $F : T^A U \to T^A W$ is of class $C^{[\infty]}_A$ and such that $F \circ \sigma_U = \sigma_W \circ f$, then $F = T^A f$. More generally, any A-smooth map $F : T^A U \to T^A W$ is entirely determined by its values on the base $\sigma_U(U)$.

Proof. Let $f : U \to W$ be of class $C^{[2k]}$. Assume $A = \mathbb{K} \oplus \mathcal{N}$ is a Weil algebra with \mathcal{N} nilpotent of order $k + 1$. For all $x \in U$, define

$$T^A_x f := (\text{Tay}_x^k f)_{\mathcal{N}} : V_{\mathcal{N}} \to W_{\mathcal{N}}$$
to be the scalar extension from \mathbb{K} to \mathcal{N} of the Taylor polynomial $T^k_x f$, and let
\[T^h f : T^h U \to T^h W, \quad (x, z) \mapsto (f(x), T^h_x f(z)). \]
It satisfies property (3). Since $T^h_x f$ is polynomial without constant term, property (2) of the theorem is fulfilled. In order to prove property (1), we prove first that $T^h_x f$ is continuous: first of all, according to Theorem C.7 (Appendix C), since $P := T^k_x f : V \to W$ is a continuous polynomial, its scalar extension $P_N : V_N \to W_N, z \mapsto (T^k_x f)_N(z)$ is continuous. By direct inspection of the proof of Theorem C.7, one sees that the dependence on x is also continuous, i.e., $(x, z) \mapsto (T^k_x f)_N(z)$ is again continuous, and hence $(x, y) \mapsto T^h f(x, y)$ is continuous (cf. Remark C.9).

Next we prove the functoriality rule $T^h(f \circ g) = T^h f \circ T^h g$. For this, we use the “chain rule for Taylor polynomials” (Theorem 2.13, Part (iii)), together with nilpotency of \mathcal{N} and the fact that, if P is a polynomial containing only terms of degree $> k$, then $P_N = 0$ by nilpotency. From this we get
\[
T^h_x (g \circ f) = (T^k_x g \circ (T^k_x f) \mod \text{deg} > k)_N
= (T^k_x (g \circ T^k_x f))_N
= (T^k_x f)_N \circ (T^k_x f)_N
= T^h_x f \circ T^h_x f .
\]
Thus T^h is a functor. It is obviously product preserving in the sense that $T^h(f \times g) = T^h f \times T^h g$.

Now we can prove that $T^h f$ is smooth over \mathbb{A}. In fact, all arguments used for the proof of [Be08], Theorem 6.2 (see also [Be13], Theorems 3.6, 3.7) apply: $T^h(\mathbb{K}) = \mathbb{K} \otimes \mathbb{A}$ is again a ring, and this ring is canonically isomorphic to \mathbb{A} itself; the conditions defining the class $\mathcal{C}^{[1]}$ over \mathbb{K} can be defined by a commutative diagram invoking direct products, hence, applying a product preserving functor yields the same kind of diagram over the ring $\mathbb{A} = T^h\mathbb{K}$. One gets that
\[
(T^h f)^{[1]}|_{\mathbb{A}} = T^h(f^{[1]}|_{\mathbb{K}}).
\]
Since $f^{[1]}$ is smooth, $T^h(f^{[1]}|_{\mathbb{K}})$ is continuous by the preceding steps, hence $(T^h f)^{[1]}|_{\mathbb{A}}$ admits a continuous extension $(T^h f)^{[1]}|_{\mathbb{A}} = T^h(f^{[1]}|_{\mathbb{K}})$, proving
that $T^k f$ is \mathcal{C}^1 over \mathbb{A}. By induction, f is then actually $\mathcal{C}^{[\infty]}$ over \mathbb{A}. This proves the existence statement.

Uniqueness is proved by adapting the method used in the proof of Theorem 2.11: fix a \mathbb{K}-basis $(1 = a_0, a_1, \ldots, a_n)$ of \mathbb{A} and write an element of $T^k U$ in the form $x + \sum_{i=1}^n a_i v_i$ with $x \in U$ and $v_i \in V$. For $F = T^k f$, we develop in a similar way as in the proof of Theorem 2.8, replacing the scalar t^i by a_i ($i = 1, \ldots, n$) and taking $k + 1$-th order radial expansions:

$$F(x + \sum_{i=1}^n a_i v_i) = F(x) + \sum_{0 \neq \alpha \in \mathbb{N}^n} a^\alpha D^\alpha_v F(x),$$

(3.1)

where, as in the proof of Theorem 2.11, no remainder term appears, because of the nilpotency of a_1, \ldots, a_n. Since $x \in U$, we have by assumption $F(x) = f(x)$, and since all $v_i \in V$, as in the proof of Theorem 2.11, it follows that $D^\alpha_v F(x) = D^\alpha_v f(x)$, hence $T^k f$ is determined by its values on the base. In the same way, we can develop any $T^k \mathbb{K}$-smooth map F, thus proving that F is determined by its values on the base U.

Equation (3.1) gives in fact an expansion for any \mathbb{A}-smooth function F. It can be considered as a generalization of Theorem 2.1 from [Sh02].

4. Weil functors as bundle functors on manifolds

4.1 Manifolds

Next we state the manifold-version of the preceding result. In order to fix terminology, let us recall the definition of smooth manifolds:

Definition 4.1. Let V be a topological \mathbb{K}-module, called the model space of the manifold. A (smooth) \mathbb{K}-manifold (with atlas, and modelled on V) is a pair (M, \mathcal{A}), where M is a topological space and \mathcal{A} is a \mathbb{K}-atlas of M, i.e., an open covering $(U_i)_{i \in I}$ of M, together with bijections $\phi_i : U_i \to V_i := \phi_i(U_i)$ onto open subsets $V_i \subset V$, such that the chart changes $\phi_{ij} := \phi_i \circ \phi_j^{-1} : V_{ji} \to V_{ij}$ are of class $\mathcal{C}^{[\infty]}_\mathbb{K}$, where $V_{ij} := \phi_i(U_i \cap U_j)$. Then \mathbb{K}-smooth maps between manifolds are defined in the usual way.
For our purposes, it will be useful to assume always that a manifold is given with atlas (maximal or not). The category of \(K \)-manifolds will be denoted by \(\text{Man}_K \). If \(A \) is a Weil \(K \)-algebra, then the category \(\text{Man}_A \) of smooth \(A \)-manifolds is well-defined.

Theorem 4.2. (Weil functors on manifolds)

1. There is a unique functor \(T^A : \text{Man}_K \to \text{Man}_A \), which coincides on open subsets \(U \) of topological \(K \)-modules with the assignment \(U \mapsto T^A U, f \mapsto T^A f \) described in Theorem 3.6. Moreover, this functor is product preserving.

2. The construction from (1) is functorial in \(A \): if \(\Phi : A \to B \) is a morphism of Weil \(K \)-algebras, then this defines canonically and in a functorial way for all \(K \)-manifolds \(M \) a smooth map \(\Phi_M : T^A M \to T^B M \) such that, for all \(K \)-smooth maps \(f : M \to N \), we have

\[
T^B f \circ \Phi_M = \Phi_N \circ T^A f.
\]

Proof. Recall that a manifold is equivalently given by the following data:

- a topological \(K \)-module \(V \) (the model space),
- open sets \((V_{ij})_{i,j \in I} \subset V \), where \(I \) is a discrete index set,
- \(K \)-smooth maps \((\phi_{ij})_{i,j \in I} \) (“chart changes”) satisfying the cocycle relations:

\[
\phi_{ii} = \text{id} \quad \text{and} \quad \phi_{ij} \phi_{jk} = \phi_{ik} \quad \text{(where defined)}.
\]

We may then define the \(K \)-manifold \(M \) to be the set of equivalence classes \(M := S/\sim \), where \(S := \{(i, x) | x \in V_{ii}\} \subset I \times V \) and \((i, x) \sim (j, y) \) if and only if \(\phi_{ij}(y) = x \), equipped with the quotient topology. Conversely, we put \(V_i := V_{ii}, U_i := \{(i, x) | x \in V_i\} \subset M \) and \(\phi_i : U_i \to V_i, [(i, x)] \mapsto x \) to recover the previous data.

Now we prove the existence statement in (1). The functor \(T^A \) associates to the topological \(K \)-module \(V \), to the open sets \(V_{ij} \subset V \) and to the \(K \)-smooth maps \(\phi_{ij} \), the topological \(A \)-module \(T^A V \), the open sets \(T^A V_{ij} \subset T^A V \) and the \(A \)-smooth maps \(T^A \phi_{ij} \). If \(M \) is a \(K \)-manifold with model \(V \) and atlas \((V_{ij}, \phi_{ij}) \), then \(T^A V \) is a model and \((T^A V_{ij}, T^A \phi_{ij})\) is an atlas of...
A-manifold. With those data, we have seen that we can construct an A-manifold, denoted by $T^A M$.

The proof of the uniqueness statement in (1) is obvious, since a manifold is entirely given by its model, charts domains and chart changes.

(2) For open $U \subset V$ we define $\Phi_U : V \otimes A \supset T^A U \to V \otimes B$, $v \otimes a \mapsto v \otimes \Phi(a)$. This is a K-linear and continuous map, hence K-smooth. In particular, the collection of maps $\Phi_U : T^A U \to T^B U$ for chart domains U defines a well-defined smooth map $\Phi_M : T^A M \to T^B M$.

Since Φ_V commutes with scalar extension of polynomials ($P_B \circ \Phi_V = \Phi_W \circ P_A$), it also commutes with extended maps, i.e., $T^B f \circ \Phi_M = \Phi_N \circ T^A f$.

Remark 4.3. If $\Phi : A \to B$ is as in (2), then any B-module becomes an A-module by $r.v := \Phi(r).v$. In this way, the target manifold $T^B M$ can also be seen as a smooth manifold over A, in such a way that Φ_M becomes A-smooth. This remark will be important for further developments in differential geometry (subsequent work).

4.2 Weil functors: bundle point of view

Next we state the bundle version of the main theorem, and we give the formulation of certain operations on Weil bundles in terms of their Weil algebras. The precise definitions of notions related to bundles are explained after the statement of the results.

Theorem 4.4 (Weil functors as bundle functors). Let $M \in \mathcal{M}_{\text{Man}_K}$ modelled on V and $A = K \oplus N$ a Weil algebra such that N is nilpotent of order $k + 1$. Then

1. $T^A M$ is a (A, K)-smooth polynomial bundle of degree k with section over M and with fiber modelled on $V_N = V \otimes_K N$. More precisely, the chart changes are polynomial in fibers of degree k and without constant term. In particular, if $N^2 = 0$, then $T^A M$ is a vector bundle over M.

2. $T^A : \mathcal{M}_{\text{Man}_K} \to \mathcal{S} \text{Bun}^A_K$ is the unique functor into bundles with section which coincides on open subsets U in topological K-modules with the assignment $U \mapsto T^A U$.

- 289 -
3. If $\Phi : A \to B$ is a morphism of Weil algebras, then (Φ_M, id_M) is a K-smooth and intrinsically linear bundle morphism between $T^A M$ and $T^B M$.

Theorem 4.5 (The “K-theory of Weil bundles”). Let $A = K \oplus N$ and $B = K \oplus M$ be K-Weil algebras.

1. The Weil functor defined by the Whitney sum $A \oplus_K B$ of two Weil algebras (cf. Lemma 3.4) is naturally isomorphic to the Whitney sum of T^A and T^B over the base manifold, i.e., for all $M \in \mathcal{M}_{\text{Man}_K}$,

$$T^{A \oplus_K B} M \cong T^A M \times_M T^B M,$$

where \times_M denotes the bundle product over M. By transport of structure, this defines a structure of $A \oplus_K B$-manifold on $T^A M \times_M T^B M$.

2. The Weil functor defined by the tensor product $A \otimes_K B$ is isomorphic to the composition $T^B \circ T^A$, and the typical fiber of $T^{A \otimes_K B} M$ over M is K-diffeomorphic to

$$V_N \oplus V_M \oplus V_{N \otimes M}.$$

3. There is a natural bundle isomorphism $T^{A \otimes B} M \cong T^{B \otimes A} M$ called the generalized flip.

4. There is a natural “distributivity isomorphism” of bundles over $T^A M$

$$T^A(T^B M \times_M T^{B'}) M \cong T^A T^B M \times_{T^A M} T^A T^B' M.$$

We stress once again that the bundles $T^A M$ and $T^B M$ are in general not vector bundles, so that there is no natural “fiberwise notion of tensor product”. Nevertheless, there exists some relation between the bundle $T^{A \otimes B} M$ and what one might expect to be a “fiberwise tensor product”; this question is closely related to the topic of connections and will be left to subsequent work. – Before turning to the (easy) proofs of both theorems, let us give the relevant definitions:

Definition 4.6. An (A, K)-smooth fiber bundle (with atlas) is given by:
1. A surjective \mathbb{K}-smooth map $\pi : E \to M$ from an \mathbb{A}-smooth manifold E (the total space), onto a \mathbb{K}-smooth manifold M (the base).

2. A type: an operation on the left $\mu : G \times F \to F$, $(g, y) \mapsto \rho(g)y$ of a group G (the structural group) on a \mathbb{K}-smooth manifold F (the typical fiber).

3. A bundle atlas, which induces the condition of local triviality: there are
 - a \mathbb{K}-manifold atlas $(U_i, \phi_i)_i$ of M, and
 - \mathbb{A}-diffeomorphisms $\alpha_i : \pi^{-1}(U_i) \to V_i \times F$, called bundle charts, such that the following diagram commutes:

 \[
 \begin{array}{ccc}
 E \supset \pi^{-1}(U_i) & \overset{\alpha_i}{\longrightarrow} & V_i \times F \\
 \downarrow \pi & & \downarrow \phi_i^{-1} \text{opr}_V_i \\
 & & U_i
 \end{array}
 \]

4. We require the bundle charts to be compatible, that is, for all bundle chart changes

 \[\alpha_{ij} := \alpha_i \circ \alpha_{j}^{-1} : V_{ij} \times F \to V_{ij} \times F,\]

 there exist maps $\gamma_{ij} : V_{ij} \to G$ (transition functions) satisfying

 \[\alpha_{ij}(x, y) = (\phi_{ij}(x), \rho(\gamma_{ij}(x))y).\]

A bundle morphism between two (\mathbb{A}, \mathbb{K})-smooth bundles $\pi : E \to M$ and $\pi' : E' \to M'$ is, as usual, a pair of maps (Φ, ϕ), where $\Phi : E \to E'$ is an \mathbb{A}-smooth map and $\phi : M \to M'$ is a \mathbb{K}-smooth map such that $\pi' \circ \Phi = \phi \circ \pi$.

Finally, a bundle with section is a fiber bundle together with a \mathbb{K}-smooth section $\sigma : M \to E$ of $\pi : E \to M$, and a morphism of bundles with section is a morphism of fiber bundles commuting with sections: $\Phi \circ \sigma = \sigma' \circ \phi$.

Note that if we fix $x \in V_{ij}$, then the maps $y \mapsto \rho(\gamma_{ij}(x))y$ are \mathbb{K}-diffeomorphisms, so that we can see G (in fact $\rho(G)$) as a subgroup of $\text{Diff}_\mathbb{K}(F)$. We do not require μ and γ_{ij} to be smooth. If it is the case (in particular, if G is a \mathbb{K}-Lie group), then the bundle is said to be strongly differentiable. Obviously, (\mathbb{A}, \mathbb{K})-smooth bundles form a category, denoted by $\text{Bun}^\mathbb{K}_{\mathbb{A}}$. Bundles with section also form a category, denoted by SBun.

- 291 -
Definition 4.7 (Polynomial bundle). Let \(V, W \) be topological \(\mathbb{K} \)-modules.

1. A fiber bundle with atlas is called a \(\mathbb{K} \)-polynomial bundle of degree \(k \) if the typical fiber is a \(\mathbb{K} \)-module and if the structural group \(G \) acts polynomially of degree \(k \) on the typical fiber \(F \) (thus \(\rho(G) \) is then a subgroup of the polynomial group \(GP_k(F) \), see Definition C.2), i.e., if the bundle chart changes \(\alpha_{ij} \) are \(\mathbb{K} \)-polynomial of degree \(k \) in fibers. In particular, an affine bundle is a polynomial bundle of degree 1. If, moreover, the bundle chart changes are without constant term, then the bundle is a vector bundle.

2. A map \(f : E \rightarrow E' \) between fiber bundles with atlas is called intrinsically \(\mathbb{K} \)-linear (resp. \(\mathbb{K} \)-polynomial) if the typical fibers are \(\mathbb{K} \)-modules, if it maps fibers to fibers and if, with respect to all charts from the given atlases, the chart representation of \(f : E_x \rightarrow E'_f(x) \) is \(\mathbb{K} \)-linear (resp. \(\mathbb{K} \)-polynomial).

Proof. (of Theorem 4.4) (1) We have seen that \(T^A M \) is an \(A \)-manifold. Moreover, the Weil algebras morphisms \(\pi^A : A \rightarrow \mathbb{K} \) and its section \(\sigma^A : \mathbb{K} \rightarrow A \), \(t \mapsto t \cdot 1 \) induce \(\mathbb{K} \)-smooth morphisms \(\pi^A_M : T^A M \rightarrow M \) and its section \(\sigma^A_M : M \rightarrow T^A M \) by Theorem 4.2. Locally, over a chart domain \(U \), \(\pi^A \) is given by the linear map \(T^A U = U \times V_M \rightarrow U \). The section \(\sigma^A \) is locally given by \(U \rightarrow U \times V_M \), \(x \mapsto (x, 0) \).

Let us show that this bundle is indeed locally trivial, with typical fiber \(V_M \), and that the chart changes are polynomial in fibers. The bundle atlas is given by the \(\mathbb{K} \)-manifold atlas \((U_i, \phi_i) \) of \(M \) and by the \(A \)-diffeomorphisms \(\alpha_i : U_i \times V_M \rightarrow V_i \times V_M \), \((x, y) \mapsto T^A f(x, y) = (f(x), (\text{Tay}_f(x))_M(y)) \). The maps \(y \mapsto (\text{Tay}_f(y))_M(x) \) are \(\mathbb{K} \)-smooth polynomial, of degree at most \(k \) and without constant term, hence define an \((A, \mathbb{K}) \)-smooth polynomial bundle over \(M \). In particular, if \(M \) is nilpotent of order 2, then \(T^A M \rightarrow M \) is a polynomial bundle of degree 1 without constant term, that is, a vector bundle. This proves part (1), and part (2) follows directly from the uniqueness statement in 3.6, and (3) from 4.2.

\[T^A U \times_U T^B U = U \times V_M \times V_M = T^{A \oplus B} U \]

Proof. (of Theorem 4.5). (1) Let \(f : V \supset U \rightarrow W \) smooth over \(\mathbb{K} \). The result follows from
and applying part (2) of the preceding theorem.

(2) Let \(f : V \supset U \to W \) smooth over \(\mathbb{K} \). We have

\[
\begin{align*}
T^B(T^hU) &= T^B(U \times V_N) \\
&= (U \times V_N) \times (V \times V_N)_M \\
&= U \times V_N \times V_M \times V_{N \otimes M} \\
&= U \times V_{N \oplus M \oplus N \otimes M} \\
&= T^{A \otimes B} U
\end{align*}
\]

Applying twice Theorem 3.6 and noting that \(\sigma^B_{T^hU} \circ \sigma^B_{T^hU} = \sigma^A_{T^h} \otimes \sigma^B_U \), it follows that

\[
T^B(T^h f) : T^B(T^h U) \to (W \otimes_{\mathbb{K}} A) \otimes_{\mathbb{K}} B
\]

is an extension of \(f \) that is smooth over the ring \(T^B(T^h \mathbb{K}) = T^B \mathbb{A} = A \otimes_{\mathbb{K}} B \).

Hence, by the uniqueness statement in Theorem 4.2, \(T^B(T^h f) = T^{A \otimes B} f \).

(3) follows from the Weil algebra isomorphism \(A \otimes B \cong B \otimes A \).

(4) follows from (1), (2), (3) and Lemma 3.4 (3).

\[\square \]

5. Canonical automorphisms, and graded Weil algebras

5.1 Canonical automorphisms

Concerning the action of the “Galois group” \(\text{Aut}_{\mathbb{K}}(A) \), Theorem 4.4 implies immediately that it acts canonically by certain intrinsically \(\mathbb{K} \)-linear bundle automorphisms of \(T^h M \), called canonical automorphisms:

\[
\text{Aut}_{\mathbb{K}}(A) \times T^h M \to T^h M, \quad (\Phi, u) \mapsto \Phi_M(u).
\]

This action commutes with the natural action of the diffeomorphism group \(\text{Diff}_{\mathbb{K}}(M) \):

\[
\text{Diff}_{\mathbb{K}}(M) \times T^h M \to T^h M, \quad (f, u) \mapsto T^h f(u).
\]

Here are some important examples of canonical automorphisms:

Example 5.1. For each \(r \in \mathbb{K}^\times \), there is a canonical automorphism \(T\mathbb{K} \to T\mathbb{K}, \quad x + \varepsilon y \mapsto x + \varepsilon ry \). The corresponding canonical map \(TM \to TM \) is multiplication by the scalar \(r \) in each tangent space. This example generalizes in two directions:
Example 5.2. By induction, the preceding example yields an action of \((K^\times)^k\) by automorphisms on the iterated tangent manifold \(T^k K\). The action of the diagonal subgroup \(K^\times\) then gives the canonical \(K^\times\)-action \(\rho\) described in Appendix B.

Example 5.3. For each \(r \in K^\times\), there is a canonical automorphism \(J^k K \to J^k K\), \(P(X) \mapsto P(rX)\). The corresponding action of \(K^\times\) by automorphisms is the action \(\rho\) described in Appendix B. It is remarkable that, in these cases, the canonical automorphisms can be traced back to isomorphisms on the level of difference calculus (Appendix A):

Theorem 5.4. Let \(r \in K^\times\), \(s \in K^k\) and \(M\) a \(K\)-manifold with atlas modelled on \(V\). There is a canonical bundle isomorphism

\[
J^k_{(s_1, \ldots, s_k)} M \to J^k_{(r^{-1}s_1, \ldots, r^{-1}s_k)} M
\]

given in all bundle charts by \(\mathbf{v} = (v_0, \ldots, v_k) \mapsto r.\mathbf{v} = (v_0, rv_1, \ldots, r^kv_k)\).

Proof. This is a restatement of the homogeneity property Theorem B.4 (ii) in terms of the invariant language of manifolds (cf. [Be13] for notation).

There is a similar result for the \(K^\times\)-action on the bundles \(T^k_t M\). For general automorphisms \(\Phi\) of \(J^k K\) or \(T^k K\), it seems to be difficult or even impossible to realize them as limit cases of a families of isomorphisms in difference calculus.

Example 5.5. The map \(TTK \to TTK, x + \varepsilon_1y_1 + \varepsilon_2y_2 + \varepsilon_1\varepsilon_2y_{12} \mapsto x + \varepsilon_1y_2 + \varepsilon_2y_1 + \varepsilon_1\varepsilon_2y_{12}\) is an automorphism, called the flip. The corresponding canonical diffeomorphism \(TTM \to TTM\) is also called the flip (see [KMS93]). By induction, we get an action of the symmetric group \(S_k\) on \(T^k M\) (see [Be08]). Recall ([BGN04]) that the flip comes from Schwarz’s Lemma, and that the proof of Schwarz’s Lemma in loc. cit. uses a symmetry of difference calculus in \(t = (t_1, t_2, t_{12})\) when \(t_{12} = 0\). It is not clear whether such a symmetry extends to difference calculus for all \(t\).

In a similar way, for any Weil algebra \(A\), the map \(A \otimes A \to A \otimes A, a \otimes a' \mapsto a' \otimes a\) is an automorphism, called the generalized flip. The corresponding canonical diffeomorphism \(T^A \otimes A M \to T^A \otimes A M\) is also called the generalized flip.
5.2 Graded Weil algebras and their automorphisms

Definition 5.6. A Weil algebra $\mathbb{A} = \mathbb{K} \oplus \mathbb{N}$ is called \mathbb{N}-graded (of length k) if it is of the form $\mathbb{A} = \mathbb{A}_0 \oplus \ldots \oplus \mathbb{A}_k$ with free submodules \mathbb{A}_i such that $\mathbb{A}_i \cdot \mathbb{A}_j \subset \mathbb{A}_{i+j}$ and $\mathbb{A}_0 = \mathbb{K}$.

In [KM04], graded Weil algebras are called homogeneous Weil algebras. All examples of Weil algebras considered so far are graded – in fact, it is not so easy to construct a Weil algebra that does not admit an \mathbb{N}-grading (see [KM04]) – and in Lemma 2.10 we have seen that such gradings arise naturally in differential calculus. We are interested in graded Weil algebras because they admit a “big” group of automorphisms. First of all, there is an obvious “one-parameter family” of automorphisms, which generalizes the canonical $\mathbb{K} \times \mathbb{K}$-action on $T^k\mathbb{K}$ and on $J^k\mathbb{K}$ from Example 5.3: if we denote an element a of $\mathbb{A} = \bigoplus_{i=0}^k \mathbb{A}_i$ by $(a_i)_{0 \leq i \leq k}$, where $a_i \in \mathbb{A}_i$ for all i, then, for $r \in \mathbb{K} \times \mathbb{K}$,

$$\mathbb{A} \rightarrow \mathbb{A}, \quad (a_i)_{0 \leq i \leq k} \mapsto (r^i a_i)_{0 \leq i \leq k}$$

is an automorphism. We will show that in fact there are “multi-parameter families” of automorphisms: recall that usual composition of formal power series without constant term, $Q, P \in \mathbb{K}[\![X]\!]_0$, is given by the following explicit formula, for $Q(X) = \sum_{n=1}^{\infty} b_n X^n$ and $P(X) = \sum_{n=1}^{\infty} a_n X^n$:

$$Q \circ P(X) = \sum_{n=1}^{\infty} c_n X^n \quad \text{with} \quad c_n = \sum_{j=1}^{n} b_j \sum_{\alpha \in \mathbb{N}^j, |\alpha| = n} a_{\alpha_1} \cdots a_{\alpha_j}. \quad (5.1)$$

If Q has constant term b_0, then the same formulae make sense, with $c_0 = b_0$, so that we get an algebra endomorphism $Q \mapsto Q \circ P$. If P has non-vanishing constant term, then the composition is not defined. In order to define, for any $P \in \mathbb{K}[\![X]\!]$, an algebra endomorphism, we let

$$R_P : \mathbb{K}[\![X]\!] \rightarrow \mathbb{K}[\![X]\!], \quad Q \mapsto R_P(Q) := Q \circ (XP) \quad (5.2)$$

(where $(XP)(X) := XP(X)$). From (5.1) we get the explicit formula

$$(R_P(Q))(X) = \left(\sum_{n=0}^{\infty} b_n X^n \right) \circ \left(X \sum_{n=0}^{\infty} a_n X^n \right) = \sum_{n=0}^{\infty} u_n X^n \quad (5.3)$$
with \(u_n = \sum_{j=1}^{n} b_j \sum_{\alpha_1 + \ldots + \alpha_j = n-j} a_{\alpha_1} \cdots a_{\alpha_j} \) (for \(n = 0 \), this has to be interpreted as \(u_0 = b_0 \)). It turns out that this formula is compatible with any graded Weil algebra:

Theorem 5.7. Let \(\mathbb{A} \) be a graded Weil algebra. Then, for any \(a = (a_i) \in \mathbb{A} \), the map

\[
R_a : \mathbb{A} \to \mathbb{A}, \quad b = (b_i) \mapsto R_a(b) = (u_i)
\]

with \(u_0 = b_0 \) and

\[
\forall n > 0 : \quad u_n = \sum_{j=1}^{n} b_j \sum_{\alpha_1 + \ldots + \alpha_j = n-j} a_{\alpha_1} \cdots a_{\alpha_j}.
\]

is an algebra endomorphism of the Weil algebra \((\mathbb{A}, +, \cdot)\). It is an automorphism if, and only if, \(a \in \mathbb{A}^\times \), i.e., iff \(a_0 \in \mathbb{K}^\times \).

Proof. \(R_a \) is well-defined: with notation from the theorem, we have indeed \(u_n \in \mathbb{A}_n \). The map \(\Psi : \mathbb{A} \to \mathbb{A}[[X]] \), \((a_i)_i \mapsto \sum_{i=0}^{k} a_i X^i\) is a \(\mathbb{K} \)-linear map onto its image \(\mathbb{A}' := \mathbb{A}_0 \oplus \mathbb{A}_1 X \oplus \cdots \oplus \mathbb{A}_k X^k \). It intertwines all algebraic structures considered so far: addition +, algebra product \(\cdot \) (here we use nilpotency of \(\mathbb{A} \)) and the correspondence \(a \mapsto R_a \) from the theorem with the correspondence denoted by \(R \) from Equation (5.2). Therefore the claims now follow immediately from the corresponding facts seen above for rings of formal power series \(\mathbb{A}[[X]] \).

Corollary 5.8. With assumptions and notation as in the theorem, for every element \(a \in \mathbb{A} \), there is an intrinsically linear endomorphism induced by \(R_a \) on each Weil bundle \(T^k M \), and this is an automorphism if \(a \in \mathbb{A}^\times \).

Example 5.9. If \(a = a_0 = r \in \mathbb{K}^\times \), the operators \(R_a \) give us again the canonical \(\mathbb{K}^\times \)-action.

Example 5.10. Let \(\mathbb{A} = T^k \mathbb{K} = \mathbb{K} \oplus \bigoplus_{\alpha} e^\alpha \mathbb{K} \) (cf. [Be08], Chapter 7), and let \(a \) such that \(a_i = 0 \) for \(i \neq 1 \) and \(a_i = \varepsilon_j \) for a fixed \(j \in \{1, \ldots, k\} \). Then \(R_a \) is the shift operator denoted by \(S_{0j} \) in [Be08], Chapter 20.

Example 5.11. Similarly, for \(\mathbb{A} = J^k \mathbb{K} = \mathbb{K}[X]/(X^{k+1}) \), with \(a = a_1 = \delta \), we get a “shift” \([P(X)] \mapsto [P(X^2)]\).
Let us close this section by showing that the automorphisms from Theorem 5.7 form a group. In general, this subgroup of $\text{Aut}_K(\mathbb{A})$ is proper (for instance, the flip of TTK is not of this type), but it seems to be fairly “big”.

Theorem 5.12. Using notation from Theorem 5.7, we have for all $a,b \in \mathbb{A}$,

$$R_a \circ R_b = R_{a \cdot R_a(b)}.$$

The “product” defined on \mathbb{A} by $b \ast a := a \cdot R_a(b)$ is associative and right-distributive. The map

$$(\mathbb{A}, \ast) \to (\text{End}(\mathbb{A}), \circ), \quad a \mapsto R_a$$

is a semigroup homomorphism, and \mathbb{A}^\times is mapped to $\text{Aut}_K(\mathbb{A})$. An explicit formula for \ast is given by

$$(a_i) \ast (b_i) = (u_n), \quad u_n = \sum_{j=0}^{n} b_j \sum_{\alpha_0 + \cdots + \alpha_j = n-j} a_{\alpha_0} \cdots a_{\alpha_j}.$$

Proof. Using the map Ψ from the proof of Theorem 5.7, the first claim amounts to noting that, for power series P, Q, S,

$$S \circ (XQ) \circ (XP) = S \circ (X \cdot P \cdot (Q \circ XP)),$$

and the fact that \ast is associative is proved similarly by noting that

$$Q \ast P = P \cdot (Q \circ XP) = \frac{1}{X}((XQ) \circ (XP)),$$

so that \ast is obtained by push-forward, via the shift $P \mapsto XP$, from usual associative composition \circ on $\mathbb{A}[[X]]_0$. Finally, the fact that $a \mapsto R_a$ is semigroup morphism holds by definition, and the explicit formula follows from (5.1). \qed

A. Difference quotient maps and K^\times-action

In this appendix we recall some basic definitions concerning difference calculus from [BGN04] and [Be13], and we emphasize the fact that the group K^\times acts, in a natural way, on all objects. In this appendix, K may be any commutative unital ring and V any K-module (no topology will be used).
A.1 Domains and \mathbb{K}^\times-action

Let $U \subset V$ be a non-empty set, called “domain”. We define two kinds of “extended domains”, the cubic one, denoted by $U^{[k]}$ and the simplicial one, denoted by $U^{(k)}$ for $k \in \mathbb{N}$, which will later be used as domains of definition of generalized kinds of tangent maps, for a given map defined on U. By convention, $U^{[0]} := U =: U^{(0)}$.

Definition A.1 (“cubic domains”). The first extended domain of U is

$$U^{[1]} := \{(x, v, t) \in V \times V \times \mathbb{K} \mid x \in U, x + tv \in U\}.$$

We say that U is the base of $U^{[1]}$, and the maps

$$\pi^{[1]} : U^{[1]} \to U, (x, v, t) \mapsto x, \quad \sigma^{[1]} : U \to U^{[1]}, x \mapsto (x, 0, 0)$$

are called the canonical projection, resp. injection. We call $U^{[1]} := \{(x, v, t) \in U^{[1]} \mid t \in \mathbb{K}^\times\}$ the set of non-singular elements in the extended domain. Letting $t = 0$, we define the most singular set or tangent domain

$$TU := \{(x, v, 0) \in U^{[1]}\} \cong U \times V.$$

By induction, we define the higher order extended cubic domains (resp., the set of their non-singular elements) for $k \in \mathbb{N}$ by

$$U^{[k+1]} := (U^{[k]})^{[1]}, \quad U^{[k+1]} := (U^{[k]})^{[1]};$$

and let $T^{k+1}U := T(T^kU)$. There are canonical projections $\pi^{[k]}_{[j]} : U^{[k]} \to U^{[j]}$, and their sections $\sigma^{[k]}_{[j]} : U^{[j]} \to U^{[k]}$ called canonical injections, for all $j \leq k$. Note that

$$U^{[2]} \subset (V^2 \times \mathbb{K}) \times (V^2 \times \mathbb{K}) \times \mathbb{K} \cong V^4 \times \mathbb{K}^3,$$

and similarly we will consider $U^{[k]}$ as a subset of $V^{2^k} \times \mathbb{K}^{2^k-1}$ and identify T^kU with $U \times V^{2^{k-1}}$. Elements of V will be called “space variables”, and elements of \mathbb{K} will be called “time variables”. We separate space variables and time variables. Correspondingly, we denote elements of $U^{[k]}$ by $(v, t) = ((v_{\alpha})_{\alpha \subset \{1, \ldots, k\}}, (t_{\alpha})_{\emptyset \neq \alpha \subset \{1, \ldots, k\}})$. With this notation, we have in particular, $v_0 \in U$, and $T^kU = \{(v, 0) \in U^{[k]}\}$.

An explicit description of the extended domains for $k > 1$ by conditions in terms of sets is fairly complicated, as the number of variables growths exponentially. In order to get a rough understanding of their structure, it is useful to note a sort of “homogeneity property”.

Definition A.2. The zero order action of \mathbb{K}^\times on U is trivial: $\mathbb{K}^\times \times U \rightarrow U$, $(r, x) \mapsto x$. The canonical \mathbb{K}^\times-action on $U^{[1]}$ is given by

$$
\rho_{[1]} : \mathbb{K}^\times \times U^{[1]} \rightarrow U^{[1]}, \quad (r, (x, v, t)) \mapsto \rho_{[1]}(r)(x, v, t) := (x, rv, r^{-1}t).
$$

This is well-defined: $x + tv \in U$ if and only if $x + r^{-1}trv \in U$. Moreover, the sets $U^{[1]}$ and TU are stable under this action. The canonical action of \mathbb{K}^\times on $U^{[2]}$ is defined as follows: write $(x, u, t) = ((v_\emptyset, v_1, t_1), (v_2, v_{12}, t_{12}), t_2) \in U^{[2]}$ with $x \in U^{[1]}$, $u \in V^{[1]}$ and $t \in \mathbb{K}$ such that $x + tu \in U^{[1]}$. For $r \in \mathbb{K}^\times$, let

$$
\rho_{[2]}(r)
((v_\emptyset, v_1, t_1), (v_2, v_{12}, t_{12}), t_2)
 = \left((\rho_{[1]}(r).x, r\rho_{[1]}(r).u, r^{-1}t)\right)
 = \left((v_\emptyset, rv_1, r^{-1}t_1), (rv_2, r^2v_{12}, t_{12}), r^{-1}t_2\right).
$$

By induction, we define the canonical action $\rho_{[k+1]} : \mathbb{K}^\times \times U^{[k+1]} \rightarrow U^{[k+1]}$

via

$$
\rho_{[k+1]}(r).(x, u, t) := (\rho_{[k]}(r).x, r\rho_{[k]}(r).u, r^{-1}t),
$$

which can also be written as

$$
\rho_{[k+1]}(r).((v_\alpha)_\alpha, (t_\alpha)_\alpha \neq \emptyset) := \left((r|\alpha|v_\alpha)_\alpha, (r^{|\alpha|-2}t_\alpha)_\alpha \neq \emptyset\right),
$$

where $|\alpha|$ is the cardinality of the set $\alpha \subset \{1, \ldots, k + 1\}$. The sets $U^{[k+1]}$ and $T^{k+1}U$ are stable under this action.

The canonical projections and injections are equivariant with respect to this action. Note that the operator $\rho_{[k]}(r)$ is \mathbb{K}-linear. An element of $U^{[k]}$ will be called homogeneous of degree ℓ if it is an eigenvector for all $\rho_{[k]}(r)$, where $r \in \mathbb{K}^\times$, with eigenvalue r^ℓ. For instance, elements x in the base U are homogeneous of degree zero. Now we define another kind of extended domain and explain its relation to the ones considered above:
Definition A.3 ("simplicial domains"). Let \(U \subset V \) be non-empty, and let (in all the following) \(s_0 := 0 \). For \(k \in \mathbb{N}^* \), we define the extended simplicial domains by

\[
U^{(k)} := \{ (v; s) \in V^{k+1} \times K^k \mid v_0 \in U, \quad \forall i = 1, \ldots, k : v_0 + \sum_{j=1}^{i-1} \prod_{m=0}^{j-1} (s_i - s_m) v_j \in U \}.
\]

Its set of non-singular elements is

\[
U^{(k)}_{\text{ns}} := \{ (v; s) \in U^{(k)} \mid \forall i \neq m : s_i - s_m \in K^x \}.
\]

Its set of most singular elements is

\[
J^k U := \{ (v; 0) \in U^{(k)} \} \cong U \times V^k.
\]

For \(j < k \), there are obvious canonical projections and injections

\[
\pi_{(j)}^{(k)} : U^{(k)} \to U^{(j)}, \quad \text{and its section} \quad \sigma_{(j)}^{(k)} : U^{(j)} \to U^{(k)}.
\]

For the subset of most singular elements, there are also the canonical projection \(\pi^k : J^k U \to U \) and its section \(\sigma^k : U \to J^k U \).

Compared to the cubic case, this definition has two advantages: it is "explicit", and the number of variables grows linearly instead of exponentially; its drawback is that it is not inductive. This will be overcome by imbedding the simplicial domains into the cubic ones (Lemma A.5 below). Note that in [Be13], \(s_0 \) has been considered as a variable. Since all "simplicial formulas" invoke only differences \(s_i - s_j \), this variable may be frozen to the value \(s_0 = 0 \), as done here. There is an obvious \(K^x \)-action:

Definition A.4. We define the canonical action \(\rho_{(k)} \) of \(K^x \) on \(U^{(k)} \) by

\[
\rho_{(k)}(r)(v_0, \ldots, v_k; s_1, \ldots, s_k) := (v_0, rv_1, r^2v_2, \ldots, r^k v_k; r^{-1}s_1, \ldots, r^{-1}s_k).
\]

It is immediately seen that \(\rho_{(k)}(r)(v; s) \in U^{(k)} \) if and only if \((v; s) \in U^{(k)} \), and that \(U^{(k)} \) and \(J^k U \) are stable under this action.
Like in the cubic case, projections and injections are \mathbb{K}^\times-equivariant, and we may speak of homogeneous elements (of degree ℓ). Again, elements from the base U are homogeneous of degree zero. An important difference with the cubic case is that here scalars are always homogeneous of the same degree -1. Next, we define an equivariant imbedding into the cubic domains:

Lemma A.5. The map $g_k : U^{(k)} \rightarrow U^{[k]}$ defined by $g_k(v; s) := (u, t)$ with

$$u_\alpha = \begin{cases} v_0 & \text{if } \alpha = \emptyset \\ v_i & \text{if } \alpha = \{1, \ldots, i\} \\ 0 & \text{else} \end{cases} \quad t_\alpha = \begin{cases} 1 & \text{if } \alpha = \{i, i+1\} \\ s_i - s_{i-1} & \text{if } \alpha = \{i\} \\ 0 & \text{else} \end{cases}$$

is a well-defined, \mathbb{K}-affine and \mathbb{K}^\times-equivariant imbedding of $U^{(k)}$ into $U^{[k]}$. Moreover, $g_k(U^{(k)}) \subset U^{[k]}$.

Proof. The fact that $g_k(U^{(k)}) \subset U^{[k]}$ is directly checked (and follows also from the recursion procedure used in [Be13], Lemma 1.5). In order to check the \mathbb{K}^\times-equivariance $g_k \circ \rho^{(k)}(r) = \rho^{[k]}(r) \circ g_k$, note that on the level of space variables v, homogeneous elements v_i of degree i are sent again to homogeneous elements of degree i (since $|\{1, \ldots, i\}| = i$). On the level of time variables s, homogeneous elements s_i of degree -1 are sent again to homogeneous elements of degree -1 (since $|\{i\}| = 1$) and, for $|\alpha| = 2$, the \mathbb{K}^\times-action on homogeneous scalars is trivial. Altogether, this implies the equivariance. The map g_k is clearly injective: the inverse (of its corestriction to $g_k(U^{(k)})$) is given by:

$$g_k^{-1}(u, t) := (v; s)$$

with

$$v_0 = u_0, \quad v_i = u_{(1, \ldots, i)} \quad \text{for all } i > 1 \quad \text{and} \quad s_0 = 0, \quad s_i = \sum_{j=0}^{i} t_{(j)}$$

Note that this inverse is also \mathbb{K}-affine. \hfill \square

The proof shows that the scalar components t_α with $|\alpha| = 2$ play a special rôle since they are the only ones that are homogeneous of degree zero; one may say that they are a sort of “pivots”. Related to this, note that g_k does not map $J^k U$ to $T^k U$. The imbedding g_k has been used in [Be13], Theorem
1.6. For \(k = 1 \), \(g_1 \) is the identity, and for \(k = 2, 3 \), we have explicitly
\[
g_2(v_0, v_1, v_2; s_1, s_2) = \left((v_0, v_1, s_1), (0, v_2, 1), s_2 - s_1 \right),
\]
\[
g_3(v_0, v_1, v_2, v_3; s_1, s_2, s_3) = \left(\left(v_0, v_1, s_1 \right), (0, v_2, 1), s_2 - s_1, \right),
\]
\[
\left((0, 0, 0), (0, v_3, 0), 1 \right), s_3 - s_2 \right).
\]

A.2 Difference calculus

Let \(V, W \) be \(K \)-modules, \(U \subset V \) a non-empty set and \(f : U \to W \) a map. We first define “cubic” difference quotients and then “simplicial” ones, also called generalized divided differences. The map \(g_k \) will imbed them into the cubic calculus.

Definition A.6 ("cubic difference quotients"). The first order difference quotient of \(f \) is the map
\[
f^{[1]} : U^{[1]} \to W, \quad (x, v, t) \mapsto \frac{f(x + tv) - f(x)}{t},
\]
and the extended tangent map is the map
\[
T^{[1]} f : U^{[1]} \to W^{[1]}, \quad (x, v, t) \mapsto (f(x), f^{[1]}(x, v, t), t).
\]
The higher order cubic difference quotients and higher order extended tangent maps are defined by induction
\[
f^{[k+1]} := \left(f^{[k]} \right)^{[1]} : U^{[k+1]} \to W
\]
\[
T^{[k+1]} f := \left(T^{[k]} \right)^{[1]} : U^{[k+1]} \to W^{[k+1]}.
\]

In [Be13], explicit formulae for \(f^{[2]} \) and \(T^{[2]} f \) are given; they are quite complicated. Here are two main properties of this construction:

Theorem A.7. Let \(f : U \to W \) and \(g : U' \to W' \) with \(f(U) \subset U' \). Then

i) **Functoriality:** \(T^{[k]}(g \circ f) = T^{[k]} g \circ T^{[k]} f \) and \(T^{[k]} \id_U = \id_{T^{[k]} U} \).

ii) **Homogeneity:** for all \(r \in K^\times \), \(T^{[k]} f \circ r_{[k]} = r_{[k]} \circ T^{[k]} f \).
Proof. (i) For $k = 1$, this is an easy computation, and for $k > 1$, it follows immediately by induction (see [BGN04]). (ii) For $k = 1$:

$$T^1[f(x, rv, r^{-1}t)] = \left(f(x), \frac{f(x + r^{-1}trv) - f(x)}{r^{-1}t}, r^{-1}t\right)$$

and for $k > 1$, the result follows by induction. \qed

Now we come to simplicial difference calculus and to its imbedding into cubic calculus. In the following, recall that, by definition, $s_0 = 0$.

Definition A.8 ("simplicial difference quotients"). For a map $f : U \to W$ we define (generalized) divided differences $f^{[k]} : U^{[k]} \to W$ by

$$f^{[1]}(v_0, v_1; s_1) := f^{[1]_1}(v_0, v_1, s_1) = \frac{f(v_0)}{s_0 - s_1} + \frac{f(v_0 + (s_1 - s_0)v_1)}{s_1 - s_0}$$

and the extended k-jet is the map $J^{[k]} f : U^{[k]} \to W^{[k]}$ sending $(v; s)$ to $J^{[k]} f(v; s) := \left(f(v_0), f^{[1]}(v_0, v_1; s_1), \ldots, f^{[k]}(v_0, \ldots, v_k; s_1, \ldots, s_k); s\right)$.

Theorem A.9. The map $g_k : U^{[k]} \to U^{[k]}$ defines an imbedding of simplicial into cubic difference calculus in the sense that, for all $f : U \to W$, we have

$$T^{[k]} f \circ g_k = (-1)^k g_k \circ J^{[k]} f : U^{[k]} \xrightarrow{J^{[k]} f} W^{[k]} \xrightarrow{g_k} U^{[k]} \xrightarrow{T^{[k]} f} W^{[k]}$$

Proof. See [Be13], Lemma 1.5 and Theorem 1.6. \qed

Theorem A.10. Let $f : U \to W$ and $g : U' \to W'$ with $f(U) \subset U'$. Then

i) Functoriality: $J^{[k]}(g \circ f) = J^{[k]} g \circ J^{[k]} f$ and $J^{[k]} \id_U = \id_{J^{[k]} U}$.

ii) Homogeneity: for all $r \in \mathbb{K}^\times$, $J^{[k]} f \circ \rho_{[k]}(r) = \rho_{[k]}(r) \circ J^{[k]} f$.

Proof. Both statements can be seen as a consequence of Theorems A.7 and A.9 above. An independent proof of (i) is given in [Be13], Theorem 2.10, and (ii) can also be proved by an easy direct computation. \qed
B. Differential calculi

Differential calculus is the extension of difference calculus to singular values. In order to do this, we need additional structure, such as, e.g., topology. We therefore assume that K is a topological ring such that its unit group K^\times is open dense in K, and we assume that V, W are topological K-modules, $U \subset V$ is open and $f : U \to W$ is a continuous map. The class of continuous maps will be denoted by C^0 (see [BGN04] for other “C^0-concepts”).

There are two concepts of differential calculus, which we call “cubic” and “simplicial”.

Definition B.1 (“cubic differentiability”). We say that $f : U \to W$ is of class C^1_K (or just C^1 if the base ring K is clear from the context) if there exists a continuous map $f^1 : U^1 \to W$ extending the first order difference quotient map: for all $(x, v, t) \in U^1$, we have $f^1(x, v, t) = \frac{f(x+tv) - f(x)}{t}$. By density of K^\times in K, the map f^1 is unique if it exists, and so is the value $df(x)v := f^1(x, v, 0) =: \partial_v f(x)$.

The extended tangent map is the map $T^1 f : U^1 \to W^1$ defined by

$$(x, v, t) \mapsto T^1 f(x, v, t) =: T^1_{(x)} f(x, v) := \left(f(x), f^1(x, v, t), t\right).$$

The classes C^k_K (or shorter: just C^k) are defined by induction: we say that f is of class C^{k+1}_K if it is of class C^k and if $f^k : U^k \to W$ is again of class C^1, where $f^k := (f^{k-1})^1$. The higher order extended tangent maps are defined by $T^{k+1} f := T^1 f \circ T^k f$, and the k-th order cubic differentials, at $x \in U$, are defined by $d^k f(x) : V^k \to W, (v_1, \ldots, v_k) \mapsto \partial_{v_1} \cdots \partial_{v_k} f(x)$.

Theorem B.2. Let $f : U \to W$, $g : U' \to W'$ of class C^k with $f(U) \subset U'$.

i) **Functoriality:** $T^k(g \circ f) = T^k g \circ T^k f$ and $T^k\text{id}_U = \text{id}_{T^k U}$.

ii) **Homogeneity:** for all $r \in K^\times$, $T^k f \circ \rho_{|K^1}(r) = \rho_{|K}(r) \circ T^k f$.

iii) **Linearity:** the differential $df(x) : V \to W$ is continuous and linear.

iv) **Symmetry:** the k-th order cubic differential map $d^k f(x) : V^k \to W$ is continuous, k times multilinear and symmetric.
Lemma ([BGN04]). (iv) is a direct consequence of (iii) and of Schwarz’ Lemma ([BGN04]).}

Functoriality is equivalent to saying that, for \(t \in \mathbb{K} \) fixed, \(T_{(t)}[1] \) is a functor, and for \(t = 0 \) this gives the usual chain rule. Moreover, for each \(t \), the functor \(T_{(t)}[1] \) commutes with direct products: \(T_{(t)}[1](f \times g) \) is naturally identified with \(T_{(t)}[1]f \times T_{(t)}[1]g \). Analogously, for fixed time variables \(t, T_{(t)}[k] \) are functors commuting with direct products. In particular, for \(t = 0, T_{(0)}[k] \) is a functor, called \textit{iterated tangent} functor and denoted by \(T^k \). Note that \(T^1 := T \) is the usual tangent functor. From this, we deduce that \(T^k \mathbb{K}, T_{(t)}^k \mathbb{K} \) and \(T^k \mathbb{K} \) are again rings, with product and addition obtained by applying the functor to product and addition in \(\mathbb{K} \). See [Be13] for more information on these rings.

Definition B.3 (“simplicial differentiability”). We say that \(f \) is of \textit{class} \(C^{(k)} \), or just of \textit{class} \(C \), if, for all \(1 \leq \ell \leq k \), there are continuous maps \(f^{(\ell)} : U^{(\ell)} \to W \) extending \(f^{(\ell)} \). Note that, by density of \(\mathbb{K}^* \) in \(\mathbb{K} \), the extension \(f^{(\ell)} \) is unique (if it exists), and hence in particular the value \(f^{(\ell)}(v; 0) \), called the \(\ell \)-th order simplicial differential is uniquely determined. We define also \(J^k f : U^{(k)} \to W^{(k)}, \ (v; s) \mapsto (f(v_0), f^{(1)}(v_0, v_1; s_1), \ldots, f^{(k)}(v; s); s) \),

and, for any fixed element \(s \in \mathbb{K}^k \), we define the simplicial \(s \)-extension of \(f \) by \(J^k_{(s)} f : J^k_{(s)} U \to W^{k+1}, \ v \mapsto J^k f(v; s) \),

where \(J^k_{(s)} U := \{ v \in V^{k+1} | (v; s) \in U^{(k)} \} \). The simplicial \(k \)-jet of \(f \) is \(J^k f := J^k_{(0)} f : J^k U \to J^k W, \ v \mapsto J^k f(v) = (f^{(\ell)}(v_0), \ldots, v_\ell; 0) \}_{\ell=0,\ldots,k} \),

where \(f^{(0)} := f \) by convention.

Theorem B.4. Let \(f : U \to W \) and \(g : U' \to W' \) of class \(C \) with \(f(U) \subset U' \).

i) **Functoriality:** \(J^k (g \circ f) = J^k g \circ J^k f \) and \(J^k \text{id}_U = \text{id}_{J^k \text{id}_U} \).
ii) Homogeneity: for all \(r \in \mathbb{K}^x \), \(J^{(k)} f \circ \rho_{(k)}(r) = \rho_{(k)}(r) \circ J^{(k)} f \).

This follows “by density” from Theorem A.10. As in the cubic case, for fixed time variables \(s \), \(J^{(k)}_{(s)} \) is a functor commuting with direct products. From this, it follows as above that \(J^{(k)} \mathbb{K} \), \(J^{(k)} \mathbb{K} \) and \(J^k \mathbb{K} \) are again rings. Again, we refer to [Be13] for more information on these rings. In particular, for \(s = 0 \), \(J^{(k)}_{(0)} \) is a functor called the \(k \)-th order jet functor, denoted by \(J^k \). Note that \(J^1 = T^1 \) is the usual tangent functor, and that for \(s = 0 \), functoriality gives equation (1.1). According to [Be13], Theorem 1.7 and Corollary 1.11, there is an equivalent characterization of the class \(C^{(k)} \) in terms of “limited expansions”, having the advantage that no denominator terms appear:

Theorem B.5. A map \(f : U \to W \) is of class \(C^{(k)} \) if, and only if the following simplicial limited expansions hold: for all \(1 \leq \ell \leq k \), there exist continuous maps \(f^{(\ell)} : U^{(\ell)} \to W \) such that, whenever \((v, s) \in U^{(\ell)} \),

\[
\begin{align*}
 f(v_0 + \sum_{j=1}^{j-1} \prod_{\ell=0}^{k-1} (s_k - s_\ell)v_j) &= f(v_0) + \\
 &\quad + \sum_{j=1}^{j-1} \prod_{\ell=0}^{k-1} (s_k - s_\ell)f^{(j)}(v_0, \ldots, v_j; s_0, \ldots, s_j)
\end{align*}
\]

The maps \(f^{(\ell)} \) defined by this condition coincide with those defined in the definition above.

Theorem B.6 (“cubic implies simplicial”). If \(f \) is of class \(C^{(k)} \), then \(f \) is of class \(C^{(k)} \), and the map \(g_k : U^{(k)} \to g_k(U^{(k)}) \subset U^{[k]} \) defines a smooth imbedding of simplicial into cubic differential calculus in the sense of Theorem A.9.

Proof. This follows “by density” from Theorem A.9 (see [Be13], Theorem 1.6).

We conjecture that also “simplicial implies cubic”, i.e., if \(f \) is \(C^{(\infty)} \), then it is also of class \(C^{(\infty)} \), but at present this conjecture is not settled. Therefore we will work throughout with a \(C^{(k)} \)-assumption.
Corollary B.7. If f is of class C^k, then $f^{(j)}$ is of class C^{k-j}, for all $j \leq k$.

Proof. Via the imbedding $g_j : U^{(j)} \to U^{[j]}$, we can consider $f^{(j)} : U^{[j]} \to W$ as a partial map of $f^{[j]} : U^{[j]} \to W$. The latter is of class $C^{[k-j]}$, hence the former is also of class $C^{[k-j]}$, and by the preceding theorem thus also of class $C^{(k-j)}$.

C. Continuous polynomial maps, and scalar extensions

The purpose of this appendix is to show that continuous \mathbb{K}-polynomial mappings are \mathbb{K}-smooth, and that their scalar extensions by Weil \mathbb{K}-algebras A are again continuous, hence smooth over A.

C.1 Continuous (multi-)homogeneous maps

As in the main text, V, W are topological modules over a topological ring \mathbb{K}.

Theorem C.1 (separation of homogeneous parts). Assume $P = \sum_{i=0}^{k} P_i$ is a sum of \mathbb{K}-homogeneous maps $P_i : V \to W$ of degree i (i.e., for all $r \in \mathbb{K}$, $P_i(rx) = r^i P_i(x)$). Then the following are equivalent:

1. The map $P : V \to W$ is continuous.
2. For $i = 0, \ldots, k$, the homogeneous part $P_i : V \to W$ is continuous.

Assume $P = \sum_{\alpha \in \mathbb{N}^n} P_\alpha : V^n \to W$ is a finite sum of multi-homogeneous maps $P_\alpha : V^n \to W$, with $\alpha = (\alpha_1, \ldots, \alpha_n)$, i.e., for all $r \in \mathbb{K}$ and $1 \leq i \leq n$, $P_\alpha(x_1, \ldots, rx_i, \ldots, x_n) = r^{\alpha_i} P_\alpha(x_1, \ldots, x_n)$. Then the following are equivalent:

1. The map $P : V^n \to W$ is continuous.
2. For all $\alpha \in \mathbb{N}^n$, the multi-homogeneous part $P_\alpha : V^n \to W$ is continuous.

Proof. We prove the first equivalence. Obviously, (2) implies (1). Let us prove the converse. Assume that P is continuous. Since P_0 is constant, it is continuous. Without loss of generality, we may assume that $P_0 = 0$.

Fix scalars $r_1, \ldots, r_k \in \mathbb{K}$ and define continuous maps (depending on these scalars)

\[
Q_1(x) := r_1P(x) - P(r_1x) = \sum_{i=2}^{k} (r_1 - r_i)P_i(x),
\]

\[
Q_{i+1}(x) := (r_{i+1})^{i+1}Q_i(x) - Q_i(r_{i+1}x).
\]

Then Q_i is a linear combination of P_{i+1}, \ldots, P_k, and in particular, we find that $Q_{k-1}(x) = \lambda P_k(x)$ with

\[
\lambda = (r_1 - r_1^k)(r_2^k - r_2) \cdots (r_{k-1}^k - r_{k-1}).
\]

In order to prove that P_k is continuous, it suffices to show that we may choose $r_1, \ldots, r_{k-1} \in \mathbb{K}$ such that the scalar λ is invertible, because then we have $P_k(x) = \lambda^{-1}Q_{k-1}(x)$. Since Q_{k-1} is continuous by construction, it then follows that P_k is continuous.

To prove our claim, write $r_i^k - r_i = r_i^k(1 - r_i^m)$ with $m = k - i$. Since the map $f : \mathbb{K} \to \mathbb{K}$, $r \mapsto 1 - r^m$ is continuous and \mathbb{K}^\times is open, $U := f^{-1}(\mathbb{K}^\times)$ is open, and U is non-empty since $0 \in U$. Since \mathbb{K}^\times is open and dense, $U' := U \cap \mathbb{K}^\times$ is open and non-empty, and we may choose $r_i \in U'$. Doing so for all i, we get an invertible scalar λ.

Having proved that P_k is continuous, we replace P by $P - P_k$ and show as above that P_{k-1} is continuous, and so on for all homogeneous parts.

The second equivalence is proved similarly: proceed as above with respect to the first variable x_1 in order to separate terms according to their degree in x_1, then use the same procedure with respect to the second variable x_2, and so on.

\[\square \]

C.2 Continuous polynomial maps

The following general definition of a \mathbb{K}-polynomial map, given in [Bou71], ch. 4, par. 5, has been used in [BGN04] (loc. cit., Appendix A, Def. A.5):

Definition C.2. A map $p: V \to W$ between \mathbb{K}-modules V and W is called homogeneous polynomial of degree k if, for any system $(e_i)_{i \in I}$ of generators of V, there exist coefficients $a_\alpha \in W$ (where $\alpha : I \to \mathbb{N}$ has finite support
and \(|\alpha| := \sum_i \alpha_i = k\) such that

\[
p \left(\sum_{i \in I} t_i e_i \right) = \sum_{\alpha} t^\alpha a_\alpha \quad \text{where} \quad t^\alpha := \prod_i t_i^{\alpha_i}.
\]

If \(V\) is free (in particular, if \(\mathbb{K}\) is a field), then this is equivalent to saying that there exists a \(k\) times multilinear map \(m : V^k \to W\) such that \(p(x) = m(x, \ldots, x)\). In any case, a polynomial map is a finite sum of homogeneous polynomial maps.

The set of polynomial maps \(p : V \to W\) is denoted by \(\text{Pol}(V, W)\), and we let \(\text{Pol}(V, W)_0 := \{p : V \to W \text{ polynomial} \mid p(0) = 0\}\). If \(V = W\), the set of polynomial maps \(p : V \to V\) having an inverse polynomial map \(q : V \to V\) forms a group denoted by \(\text{GP}(V)\), called the general polynomial group of \(V\). By \(\text{GP}(V)_0\) we denote the stabilizer subgroup of 0.

Note that, if \(p(x) = m(x, \ldots, x)\), then continuity of \(p\) does not always imply continuity of \(m\) (if the integers are invertible in \(\mathbb{K}\), then, by polarization, we may find symmetric and continuous \(m\)).

Theorem C.3. Every continuous \(\mathbb{K}\)-polynomial map \(p : V \to W\) is \(\mathbb{K}\)-smooth.

Proof. Assume \(p : V \to W\) is continuous polynomial. By theorem C.1, we may assume without loss of generality that \(p\) is homogeneous of degree \(k\). Assume first that \(p(x) = m(x, \ldots, x)\) with multilinear \(m : V^k \to W\). Since \(f\) is continuous,

\[
F : V \times V \to W; \quad (x, v) \mapsto p(x + v) = m(x + v, \ldots, x + v).
\]

is continuous and polynomial. Using multilinearity, we expand

\[
p(x + v) = m(x + v, \ldots, x + v) = \sum_{i=0}^{k} M^{k-i,i}(x, v), \quad \text{(C.1)}
\]

where \(M^{k-i,i}(x, v)\) is the sum of all terms in the expansion of \(m\) containing \(i\) times the argument \(v\) and \(k - i\) times the argument \(x\). The \(i\)-th term in (C.1) is the homogeneous part of bi-degree \((k - i, i)\) of the continuous map \(F\), and
hence, by theorem C.1, is again a continuous function of \((x, v)\). Now, for \(t \in K^\times\), we get by a similar expansion as above

\[
p^{[1]}(x, v, t) = \frac{f(x + tv) - f(x)}{t} = \sum_{i=1}^{k} t^{i-1} M^{k-i,i}(x, v),
\]

and since \(M^{k-i,i}(x, v)\) is continuous, the right hand side defines a continuous function of \((x, v, t)\), proving that a continuous extension of the difference quotient function exists, and hence \(p\) is \(C^{[1]}\). Moreover, \(p^{[1]}\) is again continuous polynomial (of total degree at most \(2k - 1\)), hence by induction it follows that \(p\) is of class \(C^{[\infty]}\).

If \(p(x)\) is not directly given by a multilinear map \(m\), then fix a system of generators \((e_i)\) of \(V\) and consider the free module \(E\) spanned by the \(e_i\), together with its canonical surjection \(E \to V\). The map \(F\) lifts to map \(\tilde{F} : E^2 \times K \to W\), which we may decompose as above, giving rise to a map \(\tilde{m}\) and to maps \(\tilde{M}^{k-i,i}\). Passing again to the quotient, we see that the bi-homogeneous components \(M^{k-i,i}\) are still continuous maps, and \(p^{[1]}\) can be extended continuously as above.

\[\Box\]

Definition C.4. Assume \(p : V \to W\) is a polynomial map of the form \(p(x) = m(x, \ldots, x)\) where \(m : V^k \to W\) is \(K\)-multilinear. For \(n \in \mathbb{N}\), \(\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{N}^n\) with \(|\alpha| := \sum_{i=1}^{n} \alpha_i = k\) and \(v = (v_1, \ldots, v_n) \in V^n\), let

\[M^\alpha(v) := m(v_1 : \alpha_1; \ldots; v_n : \alpha_n)\]

be the sum of all terms \(m(w_1, \ldots, w_k)\) with exactly \(\alpha_i\) among \(w_1, \ldots, w_k\) equal to \(v_i\).

Lemma C.5. Assume \(p : V \to W\) is a polynomial map of the form \(p(x) = m(x, \ldots, x)\) where \(m : V^k \to W\) is \(K\)-multilinear. Then, if \(p\) is continuous, so is the map

\[M^\alpha : V^n \to W, \quad v = (v_1, \ldots, v_n) \mapsto M^\alpha(v),\]

and it does not depend on the choice of \(m\), so that we may write \(p^\alpha(v) := M^\alpha(v)\).
Proof. This follows as above, by considering the continuous map
\[F : V^n \to W, \quad v \mapsto p \left(\sum_{i=1}^{n} v_i \right) = m \left(\sum_{i=1}^{n} v_i, \ldots, \sum_{i=1}^{n} v_i \right) \]
whose \(\alpha \)-homogeneous component is precisely \(M^{\alpha} \).
\(\square \)

C.3 Scalar extensions

A scalar extension of \(\mathbb{K} \) is, by definition, a commutative and associative \(\mathbb{K} \)-algebra \(\mathbb{A} \). If \(\mathbb{A} \) is unital, then there is a natural map \(\mathbb{K} \to \mathbb{A}, t \mapsto t \cdot 1 \).

Definition C.6. Let \(p : V \to W \) be a \(\mathbb{K} \)-polynomial map, homogeneous of degree \(k \). If \(p(x) = m(x, \ldots, x) \) with multilinear \(m : V^k \to W \), then the scalar extension from \(\mathbb{K} \) to \(\mathbb{A} \) of \(p \) is the map
\[p_{\mathbb{A}} : V_{\mathbb{A}} = V \otimes_{\mathbb{K}} \mathbb{A} \to W_{\mathbb{A}}, \quad v \otimes a \mapsto P(v) \otimes a^k = m_{\mathbb{A}}(av, \ldots, av), \]
where \(m_{\mathbb{A}} : (V_{\mathbb{A}})^k \to W_{\mathbb{A}} \) is the multilinear map defined by the universal property of the tensor product. If \(V \) is not free, let as above \(E \to V \) be the surjection defined by a system of generators, define \(P_{\mathbb{A}} : E_{\mathbb{A}} \to W_{\mathbb{A}} \); then this map passes to \(V \) as a map \(P_{\mathbb{A}} : V_{\mathbb{A}} \to W_{\mathbb{A}} \).

Theorem C.7. Assume \(\mathbb{K} \) is a topological ring with dense unit group, and \(\mathbb{A} \) a scalar extension of \(\mathbb{K} \) which is a topological \(\mathbb{K} \)-algebra, homeomorphic to \(\mathbb{K}^n \) with respect to some \(\mathbb{K} \)-basis \(a_1, \ldots, a_n \). Assume \(p : V \to W \) is continuous polynomial over \(\mathbb{K} \). We equip \(V_{\mathbb{A}} \) with the product topology with respect to the decomposition
\[V_{\mathbb{A}} = V \otimes_{\mathbb{K}} \left(\bigoplus_{i=1}^{n} \mathbb{K} a_i \right) = \bigoplus_{i=1}^{n} (V \otimes a_i), \]
and similarly for \(W_{\mathbb{A}} \). Then \(p_{\mathbb{A}} : V_{\mathbb{A}} \to W_{\mathbb{A}} \) is a continuous \(\mathbb{A} \)-polynomial map.

Proof. Note that the topology on \(V_{\mathbb{A}} \) does not depend on the choice of the \(\mathbb{K} \)-basis of \(\mathbb{A} \) since the group \(\text{GL}_n(\mathbb{K}) \) acts by homeomorphisms. Assume
first that \(p \) is homogeneous of degree \(k \) and of the form \(p(x) = m(x, \ldots, x) \). Then we have:

\[
p_h \left(\sum_{i=1}^{n} v_i \otimes a_i \right) = m_h \left(\sum_{i=1}^{n} v_i \otimes a_i, \ldots, \sum_{i=1}^{n} v_i \otimes a_i \right) \\
= \sum_{j_1, \ldots, j_k=1}^{n} m(v_{j_1}, \ldots, v_{j_k}) \otimes a_{j_1} \cdots a_{j_k} \\
= \sum_{(\alpha_1, \ldots, \alpha_n) \in \mathbb{N}^n: \sum_{i=1}^{n} \alpha_i = k} M^{\alpha_1, \ldots, \alpha_n} (v_1, \ldots, v_n) \otimes a_1^{\alpha_1} \cdots a_n^{\alpha_n} \\
= \sum_{\alpha \in \mathbb{N}^n: |\alpha| = k} M^\alpha (v) \otimes a^\alpha
\]

According to Lemma C.5, the map \(M^\alpha \) is continuous, and hence \(p_h \) is continuous. If \(p \) is not of the form \(p(x) = m(x, \ldots, x) \), then we use similar arguments as at the end of the proof of Theorem C.3.

Remark C.8. If \(A \) is unital, then we have a natural injection \(\sigma^A : V \rightarrow V^A, v \mapsto v \otimes_K 1_A \), and \(p_h \) “extends” \(p \) in the sense that \(p_h \circ \sigma^A = \sigma^A \circ p \).

Remark C.9. If \(p \) is as in the theorem, depending moreover continuously on a parameter \(y \) (say, \(p(x) = p_y(x) \), jointly continuous in \((x, y) \)), then, since \(M^{\alpha} \) does not depend on the choice of \(m \) (see lemma C.5), the proof of the theorem shows that \((y, z) \mapsto (p_y)_A(z) \) is again jointly continuous in \((y, z) \).

References

Hereafter we give some information about the electronic Journal:
Theory and Applications of Categories (TAC), ISSN 1201-561X

Contents of VOLUME 28, 2013

1. The monoidal structure of strictification, Nick Gurski, 1-23
2. Free products of higher operad algebras, Mark Weber, 24-65
3. Duality for distributive spaces, Dirk Hofmann, 66-122
4. Semicoidal semimonoidal categories (Applications to semirings and semicorings), Jawad Abuhlail, 123-149
5. On the monad of internal groupoids, Dominique Bourn, 150-165
6. Tannaka duality and convolution for duoidal categories, Thomas Booker and Ross Street, 166-205
7. Traced *-autonomous categories are compact closed, Tam Hajgatand Masahito Hasegawa, 206-212
8. Tightly bounded completions, Marta Bunge, 213-240
9. Geometric morphisms of realizability toposes, Peter Johnstone, 241-249
12. n-tuple groupoids and optimally coupled factorizations, Dany Majard, 304-331
13. Codensity and the ultrafilter monad, Tom Leinster, 332-370
15. Tensors, monads and actions, Gavin J. Seal, 403-434
17. Connections on non-Abelian gerbes and their holonomy, Urs Schreiber and Konrad Waldorf, 476-540
18. Subgroupoids and quotient theories, Henrik Forssell, 541-551
19. Sur les types d'homotopie modélisés par les ∞-groupoïdes stricts, Dimitri Ara, 552-576
20. Categories enriched over a quantaloid: Isbell adjunctions and Kan adjunctions, Lili Shen and Dexue Zhang, 577-615
21. Enriched indexed categories, Michael Shulman, 616-695
22. Tight spans, Isbell completions and semi-tropical modules, Simon Willerton, 696-732
23. The algebra of the nerves of omega-categories, Richard Steiner, 733-779
24. Cosimplicial structures in the nerves of omega-categories, Richard Steiner, 780-803
25. Multitensor lifting and strictly unital higher category theory, Michael Batanin, Denis-Charles Cisinski and Mark Weber, 804-856
26. Multi-tensors as monads on categories of enriched graphs, Mark Weber, 857-932
27. A double categorical model of weak 2-categories, Simona Paoli and Dorette Pronk, 933-980
28. Forms and exterior differentiation in Cartesian differential categories, G.S.H. Cruttwell, 981-1001
29. Relative Mal’tsev categories, Tomas Everaert, Julia Goedecke, Tamar Janelidze-Gray and Tim Van der Linden, 1002-1021
30. On theories of superalgebras of differentiable functions, David Carchedi and Dmitry Roytenberg, 1022-1098
32. The Gleason cover of a realizability topos, Peter Johnstone, 1139-1152
33. Galois theories of commutative semigroups via semilattices, Isabel A. Xarez and Joao J. Xarez, 1153-1169

General Information

THEORY AND APPLICATIONS OF CATEGORIES (ISSN 1201-561X) will disseminate articles that significantly advance the study of categorical algebra or methods, or that make significant new contributions to mathematical science using categorical methods. The scope of the journal includes: all areas of pure category theory, including higher dimensional categories; applications of category theory to algebra, geometry and topology and other areas of mathematics; applications of category theory to computer science, physics and other mathematical sciences; contributions to scientific knowledge using categorical methods.

Articles appearing in the journal have been carefully and critically refereed under the responsibility of members of the Editorial Board. Only papers judged to be both significant and excellent are accepted for publication.

The method of distribution of the journal is via the Internet tools WWW/ftp. The journal is archived electronically and in printed paper format. The full table of contents is at www.tac.mta.ca/tac/

Subscription/Access to articles

Individual subscribers receive abstracts of accepted papers by electronic mail. Compiled TeX (.dvi), Postscript and PDF files of the full articles are available by
Web/ftp. Details will be e-mailed to new subscribers and are available by WWW/ftp. To subscribe, send a request to: tac@mta.ca including a full name and postal address. The journal is free for individuals. For institutional subscription, send enquiries to the Managing Editor, Robert Rosebrugh: rrosebrugh@mta.ca

Information for authors
The typesetting language of the journal is TeX, and LaTeX is the preferred flavour. TeX source of articles for publication should be submitted by e-mail directly to an appropriate Editor. They are listed below. Please obtain detailed information on submission format and style files from the journal’s WWW server at the URL: http://www.tac.mta.ca/tac/. You may also write to tac@mta.ca to receive details by e-mail.

Editorial board
Robert Rosebrugh, Mount Allison University (Managing Editor), rrosebrugh@mta.ca
Michael Barr, McGill University (Associate Managing Editor), barr@math.mcgill.ca
Gavin Seal, Ecole Polytechnique Fédérale de Lausanne (Assistant TeX Editor), gavin_seal@fastmail.fm
Clemens Berger, Université de Nice-Sophia Antipolis, cberger@math.unice.fr
Richard Blute, Université d'Ottawa, rblute@uottawa.ca
Lawrence Breen, Université Paris 13, breen@math.univ-paris13.fr
Ronald Brown, University of Wales, Bangor, ronnie.profbrown@btinternet.com
Valeria de Paiva, valeria.depaiva@gmail.com
Ezra Getzler, Northwestern University, getzler(at)northwestern(dot)edu
Kathryn Hess, Ecole Polytechnique Fédérale de Lausanne, kathryn.hess@epfl.ch
Martin Hyland, University of Cambridge, M.Hyland@dpmms.cam.ac.uk
Anders Kock, University of Aarhus, kock@imf.au.dk
Stephen Lack, Macquarie University, steve.lack@mq.edu.au
F. William Lawvere, State University of New York at Buffalo, wlawvere@acsu.buffalo.edu
Tom Leinster, University of Edinburgh, Tom.Leinster@ed.ac.uk
Ieke Moerdijk, Radboud University Nijmegen, i.moerdijk@math.ru.nl
Susan Niefield, Union College, niefiels@union.edu
Robert Paré, Dalhousie University, pare@mathstat.dal.ca
Jiri Rosicky, Masaryk University, rosicky@math.muni.cz
Giuseppe Rosolini, Universita di Genova, rosolini@disi.unige.it
Alex Simpson, University of Edinburgh, Alex.Simpson@ed.ac.uk
James Stasheff, University of North Carolina, jds@math.upenn.edu
Ross Street, Macquarie University, street@math.mq.edu.au
Walter Tholen, York University, tholen@mathstat.yorku.ca
Myles Tierney, Université du Québec Montréal, tierney.myles@uqam.ca
Robert F. C. Walters, University of Insubria, rfcwalters@gmail.com
RESUMES DES ARTICLES PUBLIES
dans le Volume LV (2014)

DESCOTTE & DUBUC, A theory of 2-pro-objects, 2-36.
Grothendieck a développé la théorie des pro-objets sur une catégorie C. La propriété fondamentale de la catégorie Pro(C) des pro-objets est qu'il y a une immersion de C dans Pro(C), Pro(C) est fermée par petites limites cofiltrées, et ces limites sont 'libres'. Cet article développe une théorie des pro-objets en dimension 2. Etant donnée une 2-catégorie C, on construit une 2-catégorie 2-Pro(C), dont les les objets sont appelés 2-pro-objets. On montre que 2-Pro(C) a toutes les propriétés basiques attendues, correctement relévisées au contexte 2-catégorique, y compris la propriété universelle analogue au cas de Pro(C). Cette théorie va au-delà du cas des catégories enrichies sur Cat, car les auteurs considèrent une notion non-strict de pseudo-limite, qui est usuellement celle d'intérêt pratique.

BEZHANISHVILI & HARDING, Stable Compactifications of frames, 37-65.
Les auteurs proposent une nouvelle description des compactifications stables de Smyth des espaces T0 comme plongements dans des espaces compacts stables qui sont denses pour la "patch topology", et ils relient ces compactifications stables au cas des espaces ordonnés. Dans ce cas "sans point", on introduit une notion de compactification stable d’un frame qui étend la compactification stable de Smyth d’un espace T0, ainsi que la compactification de Banaschewski d’un "frame". On caractérise l’ensemble ordonné des compactifications stables d’un frame en termes de proximités sur le frame, et en termes de sous-frames stablement compacts du frame de ses idéaux. Ces résultats sont alors appliqués aux compactifications cohérentes de frames, et reliés à la compactification spectrale d’un espace T0 considérée par Smyth.

R. GUITART, Autocategories: I. A common setting for knots and 2-categories, 66-80.
Un autographe est une action du monoïde libre à 2 générateurs, et peut être représenté en dessinant des flèches entre des flèches, sans utiliser d’objets. Par exemple on a les graphes et les 2-graphes. La notion d’automatégorie est semblable à celle de catégorie, en remplaçant le graphe sous-jacent par un autographe. Les exemples sont les diagrammes de noeuds ou d’entrelacs (cas non-stratifiés), les catégories, 2-catégories et catégories doubles (cas stratifiés), qui ainsi résident dans la même catégorie des autocatégories.
MARTINS-FERREIRA & VAN DER LINDEN, Categories vs. groupoids via generalised Mal’tsev properties, 83-112.
On étudie la différence entre les catégories internes et les groupoïdes internes en termes de propriétés de Malcev généralisées — la propriété de Malcev faible d’un côté, et la n-permutabilité de l’autre. Dans la première partie de l’article on donne des conditions sur les structures catégoriques internes qui détectent si la catégorie ambiante est naturellement de Malcev, de Malcev ou faiblement de Malcev. On démontre que celles-ci ne dépendent pas de l’existence de produits binaires. Dans la seconde partie on se concentre sur les variétés d’algèbres universelles.

M. MENNI, Sufficient cohesion over atomic toposes, 113-150.
Soit $(D; J_o)$ un site atomique et $j : \text{Sh}(D; J_o) \rightarrow D^\wedge$ le topos des faisceaux associé. Tout foncteur $\varphi : C \rightarrow D$ induit un morphisme géométrique $C^\wedge \rightarrow D^\wedge$ et, en prenant le produit fibré le long de j, un morphisme géométrique $q : F \rightarrow \text{Sh}(D; J_o)$. L’auteur donne une condition suffisante sur φ pour que q satisfasse le Nullstellensatz et la Cohésion Suffisante au sens de la Cohésion Axiomatique. Ceci est motivé par les exemples où D^\wedge est une catégorie d’extensions finies d’un corps.

Cet article est la suite de l’article page 66. La catégorie des autographes est un topos, et une algèbre autographique sera une algèbre d’une monade sur ce topos. Ici ces algèbres sont comparées aux algèbres graphiques de Burroni, via les monoides graphiques de Lawvere, en utilisant les critères de monadicité de Lair et de Coppey. Le point est que lorsque l’on remplace une situation graphique par une situation autographique, on transforme une situation à 2 types d’arêtes en une situation à 1 type, le type “objet” étant évité. Ainsi les graphes, les algèbres graphiques basiques, les autographes dans une catégorie d’algèbres de Lawvere, les éléments de topos graphiques 2-engendrés, les catégories, les autocatégories, et les autographes associatifs sont des algèbres autographiques.

D. GARRAWAY, Q-Valued Sets and Relational-Sheaves, 161-204.
L’auteur montre qu’un faisceau de quantaloïdes est un semi-foncteur lax idempotent, qui préserve les suprema (un faisceau relationnel). Ceci implique que pour un topos de Grothendieck E, un faisceau est un faisceau relationnel sur la catégorie des relations de E et donc E est équivalent à la catégorie des faisceaux relationnels et transformations fonctionnelles. Cette théorie est développée dans le cadre de “taxons” enrichis, c’est-à-dire des semi-catégories enrichies avec une condition structurelle additionnelle.
ALLOUCH & SIMPSON, Classification des matrices associées aux catégories finies, 205-240.
In this paper, the authors find necessary and sufficient conditions for a positive square matrix to have at least one corresponding category. A corollary is that it suffices to verify these conditions for every sub-matrix of order ≤ 4.

LACK & STREET, On monads and warpings, 244-266.
Les auteurs expliquent comment une pseudo-monade sur une bicatégorie réduite à un objet revient à la même chose qu’un voilement (anglais: warping) sur la catégorie monoïdale correspondante. Ils dégagent également une version de cette équivalence pour les catégories monoïdales obliques. Les catégories monoïdales obliques (anglais: skew monoidal categories) sont une généralisation des catégories monoïdales où les morphismes d’associativité et d’unité ne sont pas forcément inversibles. Cette analyse mène à introduire un processus de normalisation pour les catégories monoïdales obliques, qui produit, d’une manière universelle, une catégorie monoïdale oblique pour laquelle le morphisme d’unité à droite est inversible.

BERTRAM & SOUVAY, A general construction of Weil functors, 267-313.
TABLE DES MATIERES DU VOLUME LV (2014)

Fascicule 1

DESCOTTE & DUBUC, A theory of 2-pro-objects .. 2
BEZHANISHVILI & HARDING, Stable compactifications of frames 37
R. GUITART, Autocategories: I. A common setting for knots and 2-categories 66

Fascicule 2

MARTINS-FERREIRA & VAN DER LINDEN, Categories vs. groupoids via generalised Mal’tsev properties ... 83
M. Menni, Sufficient cohesion over atomic toposes 113
R. GUITART, Autocategories: II. Autographic algebras 151

Fascicule 3 :

D. Garraway, Q-valued sets and relational sheaves 161
ALLOUCH & SIMPSON, Classification des matrices associées aux catégories finies .. 205

Fascicule 4

EHRESMANN, GRAN & GUITART, New editorial Board of the "Cahiers" .. 242
LACK & STREET, On monads and warpings .. 244
BERTRAM & SOUVAY, A general construction of Weil functors 267
TAC : Theory and Applications of Categories 314
RÉSUMES des articles parus dans le Volume LV 317